Improving the global convergence of Inexact Restoration methods for constrained optimization problems

Inexact restoration (IR) methods are an important family of numerical methods for solving constrained optimization problems, with applications to electronic structures and bilevel programming, among others areas. In these methods, the minimization is separated into two phases: decreasing infeasibility (feasibility phase) and improving solution (optimality phase). The feasibility phase does not require the generated points … Read more

Inexact Restoration for Minimization with Inexact Evaluation both of the Objective Function and the Constraints

In a recent paper an Inexact Restoration method for solving continuous constrained optimization problems was analyzed from the point of view of worst-case functional complexity and convergence. On the other hand, the Inexact Restoration methodology was employed, in a different research, to handle minimization problems with inexact evaluation and simple constraints. These two methodologies are … Read more

A stochastic first-order trust-region method with inexact restoration for finite-sum minimization

We propose a stochastic first-order trust-region method with inexact function and gradient evaluations for solving finite-sum minimization problems. At each iteration, the function and the gradient are approximated by sampling. The sample size in gradient approximations is smaller than the sample size in function approximations and the latter is determined using a deterministic rule inspired … Read more

Minimizing Nonsmooth Convex Functions with Variable Accuracy

We consider unconstrained optimization problems with nonsmooth and convex objective function in the form of mathematical expectation. The proposed method approximates the objective function with a sample average function by using different sample size in each iteration. The sample size is chosen in an adaptive manner based on the Inexact Restoration. The method uses line … Read more

Economic inexact restoration for derivative-free expensive function minimization and applications

The Inexact Restoration approach has proved to be an adequate tool for handling the problem of minimizing an expensive function within an arbitrary feasible set by using different degrees of precision in the objective function. The Inexact Restoration framework allows one to obtain suitable convergence and complexity results for an approach that rationally combines low- … Read more

Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact

In many cases in which one wishes to minimize a complicated or expensive function, it is convenient to employ cheap approximations, at least when the current approximation to the solution is poor. Adequate strategies for deciding the accuracy desired at each stage of optimization are crucial for the global convergence and overall efficiency of the … Read more

Inexact restoration with subsampled trust-region methods for finite-sum minimization

Convex and nonconvex finite-sum minimization arises in many scientific computing and machine learning applications. Recently, first-order and second-order methods where objective functions, gradients and Hessians are approximated by randomly sampling components of the sum have received great attention. We propose a new trust-region method which employs suitable approximations of the objective function, gradient and Hessian … Read more

Global convergence of a derivative-free inexact restoration filter algorithm for nonlinear programming

In this work we present an algorithm for solving constrained optimization problems that does not make explicit use of the objective function derivatives. The algorithm mixes an inexact restoration framework with filter techniques, where the forbidden regions can be given by the flat or slanting filter rule. Each iteration is decomposed in two independent phases: … Read more

Assessing the reliability of general-purpose Inexact Restoration methods

Inexact Restoration methods have been proved to be effective to solve constrained optimization problems in which some structure of the feasible set induces a natural way of recovering feasibility from arbitrary infeasible points. Sometimes natural ways of dealing with minimization over tangent approximations of the feasible set are also employed. A recent paper [N. Banihashemi … Read more

Inexact Restoration method for Derivative-Free Optimization with smooth constraints

A new method is introduced for solving constrained optimization problems in which the derivatives of the constraints are available but the derivatives of the objective function are not. The method is based on the Inexact Restoration framework, by means of which each iteration is divided in two phases. In the first phase one considers only … Read more