On an adaptive regularization for ill-posed nonlinear systems and its trust-region implementation

In this paper we address the stable numerical solution of nonlinear ill-posed systems by a trust-region method. We show that an appropriate choice of the trust-region radius gives rise to a procedure that has the potential to approach a solution of the unperturbed system. This regularizing property is shown theoretically and validated numerically. CitationDipartimento di … Read more

On the update of constraint preconditioners for regularized KKT systems

We address the problem of preconditioning sequences of regularized KKT systems, such as those arising in Interior Point methods for convex quadratic programming. In this case, Constraint Preconditioners (CPs) are very effective and widely used; however, when solving large-scale problems, the computational cost for their factorization may be high, and techniques for approximating them appear … Read more

Preconditioning issues in the numerical solution of nonlinear equations and nonlinear least squares

Second order methods for optimization call for the solution of sequences of linear systems. In this survey we will discuss several issues related to the preconditioning of such sequences. Covered topics include both techniques for building updates of factorized preconditioners and quasi-Newton approaches. Sequences of unsymmetric linear systems arising in Newton- Krylov methods will be … Read more

Updating constraint preconditioners for KKT systems in quadratic programming via low-rank corrections

This work focuses on the iterative solution of sequences of KKT linear systems arising in interior point methods applied to large convex quadratic programming problems. This task is the computational core of the interior point procedure and an efficient preconditioning strategy is crucial for the efficiency of the overall method. Constraint preconditioners are very effective … Read more

Strong local convergence properties of adaptive regularized methods for nonlinear least-squares

This paper studies adaptive regularized methods for nonlinear least-squares problems where the model of the objective function used at each iteration is either the Euclidean residual regularized by a quadratic term or the Gauss-Newton model regularized by a cubic term. For suitable choices of the regularization parameter the role of the regularization term is to … Read more

New updates of incomplete LU factorizations and applications to large nonlinear systems

In this paper, we address the problem of preconditioning sequences of large sparse nonsymmetric systems of linear equations and present two new strategies to construct approximate updates of factorized preconditioners. Both updates are based on the availability of an incomplete LU (ILU) factorization for one matrix of the sequence and differ in the approximation of … Read more

A preconditioning framework for sequences of diagonally modified linear systems arising in optimization

We propose a framework for building preconditioners for sequences of linear systems of the form $(A+\Delta_k) x_k=b_k$, where $A$ is symmetric positive semidefinite and $\Delta_k$ is diagonal positive semidefinite. Such sequences arise in several optimization methods, e.g., in affine-scaling methods for bound-constrained convex quadratic programming and bound-constrained linear least squares, as well as in trust-region … Read more

Efficient preconditioner updates for shifted linear systems

We present a new technique for building effective and low cost preconditioners for sequences of shifted linear systems (A+aI)x=b, where A is symmetric positive definite and a>0. This technique updates a preconditioner for A, available in the form of an LDL’ factorization, by modifying only the nonzero entries of the L factor in such a … Read more

On affine scaling inexact dogleg methods for bound-constrained nonlinear systems

A class of trust-region methods for large scale bound-constrained systems of nonlinear equations is presented. The methods in this class follow the so called affine-scaling approach and can efficiently handle large scale problems. At each iteration, a suitably scaled region around the current approximate solution is defined and, within such a region, the norm of … Read more

Constrained Dogleg Methods for nonlinear systems with simple bounds

We focus on the numerical solution of medium scale bound-constrained systems of nonlinear equations. In this context, we consider an affine-scaling trust region approach that allows a great flexibility in choosing the scaling matrix used to handle the bounds. The method is based on a dogleg procedure tailored for constrained problems and so, it is … Read more