A multilevel stochastic regularized first-order method with application to training

In this paper, we propose a new multilevel stochastic framework for the solution of optimization problems. The proposed approach uses random regularized first-order models that exploit an available hierarchical description of the problem, being either in the classical variable space or in the function space, meaning that different levels of accuracy for the objective function … Read more

Black-box optimization for the design of a jet plate for impingement cooling

In this work we show how exploiting black-box optimization in the design of a cooling system for a nozzle in a gas turbine. We develop a black-box function that simulates an impingement cooling system starting from a well-known model that correlates the design features of the cooling system with efficiency parameters. We also provide a … Read more

Worst-case Complexity Bounds of Directional Direct-search Methods for Multiobjective Optimization

Direct Multisearch is a well-established class of algorithms, suited for multiobjective derivative-free optimization. In this work, we analyze the worst-case complexity of this class of methods in its most general formulation for unconstrained optimization. Considering nonconvex smooth functions, we show that to drive a given criticality measure below a specific positive threshold, Direct Multisearch takes … Read more

On an Elliptical Trust-Region Procedure for Ill-Posed Nonlinear Least-Squares Problems

In this paper we address the stable numerical solution of ill-posed nonlinear least-squares problems with small residual. We propose an elliptical trust-region reformulation of a Levenberg-Marquardt procedure. Thanks to an appropriate choice of the trust-region radius, the proposed procedure guarantees an automatic choice of the free regularization parameters that, together with a suitable stopping criterion, … Read more

A Levenberg-Marquardt method for large nonlinear least-squares problems with dynamic accuracy in functions and gradients

In this paper we consider large scale nonlinear least-squares problems for which function and gradient are evaluated with dynamic accuracy and propose a Levenberg-Marquardt method for solving such problems. More precisely, we consider the case in which the exact function to optimize is not available or its evaluation is computationally demanding, but ap- proximations of … Read more

Sequential Linear Programming and Particle Swarm Optimization for the optimization of energy districts

In this paper we deal with the optimization of energy resources management of industrial districts, with the aim of minimizing the customer energy expenses. In a district the number of possible energy system combinations is really large, and a manual design approach might lead to a suboptimal solution. For this reason we designed a software … Read more

On an adaptive regularization for ill-posed nonlinear systems and its trust-region implementation

In this paper we address the stable numerical solution of nonlinear ill-posed systems by a trust-region method. We show that an appropriate choice of the trust-region radius gives rise to a procedure that has the potential to approach a solution of the unperturbed system. This regularizing property is shown theoretically and validated numerically. CitationDipartimento di … Read more