Barzilai-Borwein-like rules in proximal gradient schemes for ℓ1−regularized problems

We propose a novel steplength selection rule in proximal gradient methods for minimizing the sum of a differentiable function plus an ℓ1-norm penalty term. The proposed rule modifies one of the classical Barzilai-Borwein steplength, extending analogous results obtained in the context of gradient projection methods for constrained optimization. We analyze the spectral properties of the … Read more

Using gradient directions to get global convergence of Newton-type methods

The renewed interest in Steepest Descent (SD) methods following the work of Barzilai and Borwein [IMA Journal of Numerical Analysis, 8 (1988)] has driven us to consider a globalization strategy based on SD, which is applicable to any line-search method. In particular, we combine Newton-type directions with scaled SD steps to have suitable descent directions. … Read more

A two-phase gradient method for quadratic programming problems with a single linear constraint and bounds on the variables

We propose a gradient-based method for quadratic programming problems with a single linear constraint and bounds on the variables. Inspired by the GPCG algorithm for bound-constrained convex quadratic programming [J.J. More’ and G. Toraldo, SIAM J. Optim. 1, 1991], our approach alternates between two phases until convergence: an identification phase, which performs gradient projection iterations … Read more

On the steplength selection in gradient methods for unconstrained optimization

The seminal paper by Barzilai and Borwein [IMA J. Numer. Anal. 8 (1988)] has given rise to an extensive investigation aimed at developing effective gradient methods, able to deal with large-scale optimization problems. Several steplength rules have been first designed for unconstrained quadratic problems and then extended to general nonlinear problems; these rules share the … Read more

An efficient gradient method using the Yuan steplength

We propose a new gradient method for quadratic programming, named SDC, which alternates some SD iterates with some gradient iterates that use a constant steplength computed through the Yuan formula. The SDC method exploits the asymptotic spectral behaviour of the Yuan steplength to foster a selective elimination of the components of the gradient along the … Read more

On spectral properties of steepest descent methods

In recent years it has been made more and more clear that the critical issue in gradient methods is the choice of the step length, whereas using the gradient as search direction may lead to very effective algorithms, whose surprising behaviour has been only partially explained, mostly in terms of the spectrum of the Hessian … Read more

A modified DIRECT algorithm for a problem in astrophysics

We present a modification of the DIRECT algorithm, called DIRECT-G, to solve a box-constrained global optimization problem arising in the detection of gravitational waves emitted by coalescing binary systems of compact objects. This is a hard problem since the objective function is highly nonlinear and expensive to evaluate, has a huge number of local extrema … Read more

A genetic algorithm for a global optimization problem arising in the detection of gravitational waves

The detection of gravitational waves is a long-awaited event in modern physics and, to achieve this challenging goal, detectors with high sensitivity are being used or are under development. In order to extract gravitational signals, emitted by coalescing binary systems of compact objects (neutron stars and/or black holes), from noisy data obtained by interferometric detectors, … Read more

GRASP with path relinking for the three-index assignment problem

This paper describes variants of GRASP (greedy randomized adaptive search procedure) with path relinking for the three index assignment problem (AP3). GRASP is a multi-start metaheuristic for combinatorial optimization. It usually consists of a construction procedure based on a greedy randomized algorithm and of a local search. Path relinking is an intensification strategy that explores … Read more