Nonlinear Derivative-free Constrained Optimization with a Mixed Penalty-Logarithmic Barrier Approach and Direct Search

In this work, we propose the joint use of a mixed penalty-logarithmic barrier approach and generating set search, for addressing nonlinearly constrained derivative-free optimization problems. A merit function is considered, wherein the set of inequality constraints is divided into two groups: one treated with a logarithmic barrier approach, and another, along with the equality constraints, … Read more

Complexity results and active-set identification of a derivative-free method for bound-constrained problems

In this paper, we analyze a derivative-free line search method designed for bound-constrained problems. Our analysis demonstrates that this method exhibits a worst-case complexity comparable to other derivative-free methods for unconstrained and linearly constrained problems. In particular, when minimizing a function with $n$ variables, we prove that at most ${\cal O}(n\epsilon^{-2})$ iterations are needed to … Read more

An augmented Lagrangian method exploiting an active-set strategy and second-order information

In this paper, we consider nonlinear optimization problems with nonlinear equality constraints and bound constraints on the variables. For the solution of such problems, many augmented Lagrangian methods have been defined in the literature. Here, we propose to modify one of these algorithms, namely ALGENCAN by Andreani et al., in such a way to incorporate … Read more

Computing mixed strategies equilibria in presence of switching costs by the solution of nonconvex QP problems

In this paper we address a game theory problem arising in the context of network security. In traditional game theory problems, given a defender and an attacker, one searches for mixed strategies which minimize a linear payoff functional. In the problem addressed in this paper an additional quadratic term is added to the minimization problem. … Read more

Trust-region methods for the derivative-free optimization of nonsmooth black-box functions

In this paper we study the minimization of a nonsmooth black-box type function, without assuming any access to derivatives or generalized derivatives and without any knowledge about the analytical origin of the function nonsmoothness. Directional methods have been derived for such problems but to our knowledge no model-based method like a trust-region one has yet … Read more

An algorithmic framework based on primitive directions and nonmonotone line searches for black box problems with integer variables

In this paper, we develop a new algorithmic framework that handles black box problems with integer variables. The strategy included in the framework makes use of specific search directions (so called primitive directions) and a suitably developed nonmonotone line search, thus guaranteeing a high level of freedom when exploring the integer lattice. We first describe … Read more

A new branch-and-bound algorithm for standard quadratic programming problems

In this paper we propose convex and LP bounds for Standard Quadratic Programming (StQP) problems and employ them within a branch-and-bound approach. We first compare different bounding strategies for StQPs in terms both of the quality of the bound and of the computation times. It turns out that the polyhedral bounding strategy is the best … Read more

A DERIVATIVE-FREE APPROACH TO CONSTRAINED MULTIOBJECTIVE NONSMOOTH OPTIMIZATION

In this work, we consider multiobjective optimization problems with both bound constraints on the variables and general nonlinear constraints, where objective and constraint function values can only be obtained by querying a black box. We define a linesearch-based solution method, and we show that it converges to a set of Pareto stationary points. To this … Read more

Derivative-free Methods for Mixed-Integer Constrained Optimization Problems

Methods which do not use any derivative information are becoming popular among researchers, since they allow to solve many real-world engineering problems. Such problems are frequently characterized by the presence of discrete variables which can further complicate the optimization process. In this paper, we propose derivative-free algorithms for solving continuously differentiable Mixed Integer NonLinear Programming … Read more

Exploiting derivative-free local searches in DIRECT-type algorithms for global optimization

In this paper we consider bound constrained global optimization problems where first-order derivatives of the objective function can be neither computed nor approximated explicitly. For the solution of such problems the DIRECT Algorithm has been proposed which has strong convergence properties and a good ability to locate promising regions of the feasible domain. However, the … Read more