## Relative Entropy Relaxations for Signomial Optimization

Signomial programs (SPs) are optimization problems specified in terms of signomials, which are weighted sums of exponentials composed with linear functionals of a decision variable. SPs are non convex optimization problems in general, and families of NP-hard problems can be reduced to SPs. In this paper we describe a hierarchy of convex relaxations to obtain … Read more

## Conic Geometric Programming

We introduce and study conic geometric programs (CGPs), which are convex optimization problems that unify geometric programs (GPs) and conic optimization problems such as linear programs (LPs) and semidefinite programs (SDPs). A CGP consists of a linear objective function that is to be minimized subject to affine constraints, convex conic constraints, and upper bound constraints … Read more

## Convex Graph Invariants

The structural properties of graphs are usually characterized in terms of invariants, which are functions of graphs that do not depend on the labeling of the nodes. In this paper we study convex graph invariants, which are graph invariants that are convex functions of the adjacency matrix of a graph. Some examples include functions of … Read more

## The Convex Geometry of Linear Inverse Problems

In applications throughout science and engineering one is often faced with the challenge of solving an ill-posed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees … Read more

## Rank-Sparsity Incoherence for Matrix Decomposition

Suppose we are given a matrix that is formed by adding an unknown sparse matrix to an unknown low-rank matrix. Our goal is to decompose the given matrix into its sparse and low-rank components. Such a problem arises in a number of applications in model and system identification, and is NP-hard in general. In this … Read more