Amenable cones are particularly nice

Amenability is a geometric property of convex cones that is stronger than facial exposedness and assists in the study of error bounds for conic feasibility problems. In this paper we establish numerous properties of amenable cones, and investigate the relationships between amenability and other properties of convex cones, such as niceness and projectional exposure. We … Read more

A data-independent distance to infeasibility for linear conic systems

We offer a unified treatment of distinct measures of well-posedness for homogeneous conic systems. To that end, we introduce a distance to infeasibility based entirely on geometric considerations of the elements defining the conic system. Our approach sheds new light into and connects several well-known condition measures for conic systems, including {\em Renegar’s} distance to … Read more

Refining the partition for multifold conic optimization problems

In this paper we give a unified treatment to different definitions of complementarity partition for a primal-dual pair of linear conic optimization problem. Citation Submitted ArXiv 1804.00386 http://arxiv.org/abs/1804.00386 Article Download View Refining the partition for multifold conic optimization problems

Facially dual complete (nice) cones and lexicographic tangents

We study the boundary structure of closed convex cones, with a focus on facially dual complete (nice) cones. These cones form a proper subset of facially exposed convex cones, and they behave well in the context of duality theory for convex optimization. Using the well-known and very commonly used concept of tangent cones in nonlinear … Read more

On the Grassmann condition number

We give new insight into the Grassmann condition of the conic feasibility problem \[ x \in L \cap K \setminus\{0\}. \] Here $K\subseteq V$ is a regular convex cone and $L\subseteq V$ is a linear subspace of the finite dimensional Euclidean vector space $V$. The Grassmann condition of this problem is the reciprocal of the … Read more

Some preconditioners for systems of linear inequalities

We show that a combination of two simple preprocessing steps would generally improve the conditioning of a homogeneous system of linear inequalities. Our approach is based on a comparison among three different but related notions of conditioning for linear inequalities. Article Download View Some preconditioners for systems of linear inequalities

Facially exposed cones are not always nice

We address the conjecture proposed by Gabor Pataki that every facially exposed cone is nice. We show that the conjecture is true in the three-dimensional case, however, there exists a four-dimensional counterexample of a cone that is facially exposed but is not nice. Citation CRN, University of Ballarat Article Download View Facially exposed cones are … Read more

A Complementarity Partition Theorem for Multifold Conic Systems

Consider a homogeneous multifold convex conic system $$ Ax = 0, \; x\in K_1\times \cdots \times K_r $$ and its alternative system $$ A\transp y \in K_1^*\times \cdots \times K_r^*, $$ where $K_1,\dots, K_r$ are regular closed convex cones. We show that there is canonical partition of the index set $\{1,\dots,r\}$ determined by certain complementarity … Read more