Complex Matrix Decomposition and Quadratic Programming

This paper studies the possibilities of the Linear Matrix Inequality (LMI) characterization of the matrix cones formed by nonnegative complex Hermitian quadratic functions over specific domains in the complex space. In its real case analog, such studies were conducted in Sturm and Zhang in 2003. In this paper it is shown that stronger results can … Read more

Approximation Algorithms for Indefinite Complex Quadratic Maximization Problems

In this paper we consider the following two types of complex quadratic maximization problems: (i) maximize $z^{\HH} Q z$, subject to $z_k^m=1$, $k=1,…,n$, where $Q$ is a Hermitian matrix with $\tr Q=0$ and $z\in \C^n$ is the decision vector; (ii) maximize $\re y^{\HH}Az$, subject to $y_k^m=1$, $k=1,…,p$, and $z_l^m=1$, $l=1,…,q$, where $A\in \C^{p\times q}$ and … Read more

Complex Quadratic Optimization and Semidefinite Programming

In this paper we study the approximation algorithms for a class of discrete quadratic optimization problems in the Hermitian complex form. A special case of the problem that we study corresponds to the max-3-cut model used in a recent paper of Goemans and Williamson. We first develop a closed-form formula to compute the probability of … Read more

Optimality Conditions for Vector Optimization with Set-Valued Maps

Based on near convexity, we introduce the concepts of nearly convexlike set-valued maps and nearly semiconvexlike set-valued maps, give some charaterizations of them, and investigate the relationships between them. Then a Farkas-Minkowski type alternative theorem is shown under the assumption of near semiconvexlikeness. By using the alternative theorem and some other lemmas, we establish necessary … Read more