Social Cognitive Maps, Swarm Collective Perception and Distributed Search on Dynamic Landscapes

Swarm Intelligence (SI) is the property of a system whereby the collective behaviors of (unsophisticated) entities interacting locally with their environment cause coherent functional global patterns to emerge. SI provides a basis with wich it is possible to explore collective (or distributed) problem solving without centralized control or the provision of a global model. To … Read more

Varying the Population Size of Artificial Foraging Swarms on Time Varying Landscapes

Swarm Intelligence (SI) is the property of a system whereby the collective behaviors of (unsophisticated) entities interacting locally with their environment cause coherent functional global patterns to emerge. SI provides a basis with wich it is possible to explore collective (or distributed) problem solving without centralized control or the provision of a global model. In … Read more

A Population Based Approach for Hard Global Optimization Problems Based on Dissimilarity Measures

When dealing with extremely hard global optimization problems, i.e. problems with a large number of variables and a huge number of local optima, heuristic procedures are the only possible choice. In this situation, lacking any possibility of guaranteeing global optimality for most problem instances, it is quite difficult to establish rules for discriminating among different … Read more

GRASP with path-relinking for the weighted maximum satisfiability problem

A GRASP with path-relinking for finding good-quality solutions of the weighted maximum satisfiability problem (MAX-SAT) is described in this paper. GRASP, or Greedy Randomized Adaptive Search Procedure, is a randomized multi-start metaheuristic, where at each iteration locally optimal solutions are constructed, each independent of the others. Previous experimental results indicate its effectiveness for solving weighted … Read more

A Trust-Region Algorithm for Global Optimization

We consider the global minimization of a bound-constrained function with a so-called funnel structure. We develop a two-phase procedure that uses sampling, local optimization, and Gaussian smoothing to construct a smooth model of the underlying funnel. The procedure is embedded in a trust-region framework that avoids the pitfalls of a fixed sampling radius. We present … Read more

Gradient-Controlled, Typical-Distance Clustering for Global Optimization

We present a stochastic global optimization method that employs a clustering technique which is based on a typical distance and a gradient test. The method aims to recover all the local minima inside a rectangular domain. A new stopping rule is used. Comparative results on a set of test functions are reported. Citation Preprint, no … Read more

Fuzzy Control of Stochastic Global Optimization Algorithms and Very Fast Simulated Reannealing

This paper presents a fuzzy control approach for improving convergence time in stochastic global minimization algorithms .We show concrete results when the method is applied to an efficient algorithm based on ideas related to Simulated Annealing. Article Download View Fuzzy Control of Stochastic Global Optimization Algorithms and Very Fast Simulated Reannealing

Local optima smoothing for global optimization

It is widely believed that in order to solve large scale global optimization problems an appropriate mixture of local approximation and global exploration is necessary. Local approximation, if first order information on the objective function is available, is efficiently performed by means of local optimization methods. Unfortunately, global exploration, in absence of some kind of … Read more

The global optimization of Morse clusters by potential energy transformations

The Morse potential is a simple model pair potential that has a single parameter $\rho$ which determines the width of the potential well and allows a wide variety of materials to be modelled. Morse clusters provide a particularly tough test system for global optimization algorithms, and one that is highly relevant to methods that are … Read more

A randomized global optimization method for protein-protein docking

In this paper we report results on the problem of docking two large proteins by means of a two-phase monotonic basin hopping method. Given an appropriate force field which is used to measure the interaction energy between two biomolecules which are considered as rigid bodies, we used a randomized global optimization methods based upon the … Read more