Interior-Point Method for Nonlinear Nonconvex Optimization

In this paper, we propose an algorithm for solving nonlinear nonconvex programming problems, which is based on the interior-point approach. Main theoretical results concern direction determination and step-length selection. We split inequality constraints into active and inactive to overcome problems with stability. Inactive constraints are eliminated directly while active constraints are used to define symmetric … Read more

Nonsmooth Equation Method for Nonlinear Nonconvex Optimization

In this paper, we propose an algorithm for solving nonlinear nonconvex programming problems, which is based on the nonsmooth equation approach. This Algorithm was implemented in the interactive system for universal functional optimization UFO. Results of numerical experiments are reported. Citation Report V844, Institute of Computer Science, AV CR, Pod Vodarenskou Vezi 2, 18207 Praha … Read more

Nonlinear Optimisation in CHP-Applications

At the Fraunhofer Institute UMSICHT a nonlinear model has been developed facilitating the dynamic optimisation of combined heat and power production systems. The strategy called “dynamic supply temperature optimisation” is a very promising approach to use the DH-network itself as a large heat storage causing no additional investment cost. The pipeline system of a district … Read more

An Active-Set Algorithm for Nonlinear Programming Using Linear Programming and Equality Constrained Subproblems

This paper describes an active-set algorithm for large-scale nonlinear programming based on the successive linear programming method proposed by Fletcher and Sainz de la Maza. The step computation is performed in two stages. In the first stage a linear program is solved to estimate the active set at the solution. The linear program is obtained … Read more

A Primal-Dual Trust Region Algorithm for Nonlinear Optimization

This paper concerns general (nonconvex) nonlinear optimization when first and second derivatives of the objective and constraint functions are available. The proposed method is based on finding an approximate solution of a sequence of unconstrained subproblems parameterized by a scalar parameter. The objective function of each unconstrained subproblem is an augmented penalty-barrier function that involves … Read more

A Simple Primal-Dual Feasible Interior-Point Methodfor Nonlinear Programming with Monotone Descent

We propose and analyze a primal-dual interior point method of the “feasible” type, with the additional property that the objective function decreases at each iteration. A distinctive feature of the method is the use of different barrier parameter values for each constraint, with the purpose of better steering the constructed sequence away from non-KKT stationary … Read more

On the superlinear local convergence of a filter-SQP method

Transition to superlinear local convergence is shown for a modified version of the trust-region filter-SQP method for nonlinear programming introduced by Fletcher, Leyffer, and Toint [8]. Hereby, the original trust-region SQP-steps can be used without an additional second order correction. The main modification consists in using the Lagrangian function value instead of the objective function … Read more

Computing Mountain Passes

We propose the elastic string algorithm for computing mountain passes in finite-dimensional problems. We analyze the convergence properties and numerical performance of this algorithm for benchmark problems in chemistry and discretizations of infinite-dimensional variational problems. We show that any limit point of the elastic string algorithm is a path that crosses a critical point at … Read more

Extension of Quasi-Newton Methods to Mathematical Programs with Complementarity Constraints

Quasi-Newton methods in conjunction with the piecewise sequential quadratic programming are investigated for solving mathematical programming with equilibrium constraints, in particular for problems with complementarity constraints. Local convergence as well as superlinear convergence of these quasi-Newton methods can be established under suitable assumptions. In particular, several well-known quasi-Newton methods such as BFGS and DFP are … Read more

Convergence of a Penalty Method for Mathematical Programmingwith ComplementarityConstraints

We adapt the convergence analysis of smoothing (Fukushima and Pang) and regularization (Scholtes) methods to a penalty framework for mathematical programs with complementarity constraints (MPCCs), and show that the penalty framework shares similar convergence properties to these methods. Moreover, we give sufficient conditions for a sequence generated by the penalty framework to be attracted to … Read more