A Primal-Dual Interior-Point Method for Nonlinear Programming with Strong Global and Local Convergence Properties.

An exact-penalty-function-based scheme—inspired from an old idea due to Mayne and Polak (Math. Prog., vol.~11, 1976, pp.~67–80)—is proposed for extending to general smooth constrained optimization problems any given feasible interior-point method for inequality constrained problems. It is shown that the primal-dual interior-point framework allows for a simpler penalty parameter update rule than that discussed and … Read more

A new exact penalty function

For constrained smooth or nonsmooth optimization problems, new continuously differentiable penalty functions are derived. They are proved exact in the sense that under some nondegeneracy assumption, local optimizers of a nonlinear program are precisely the optimizers of the associated penalty function. This is achieved by augmenting the dimension of the program by a variable that … Read more

Combinatorial Structures in Nonlinear Programming

Non-smoothness and non-convexity in optimization problems often arise because a combinatorial structure is imposed on smooth or convex data. The combinatorial aspect can be explicit, e.g. through the use of ”max”, ”min”, or ”if” statements in a model, or implicit as in the case of bilevel optimization where the combinatorial structure arises from the possible … Read more

Local convergence of SQP methods for Mathematical Programs with Equilibrium Constraints

Recently, it has been shown that Nonlinear Programming solvers can successfully solve a range of Mathematical Programs with Equilibrium Constraints (MPECs). In particular, Sequential Quadratic Programming (SQP) methods have been very successful. This paper examines the local convergence properties of SQP methods applied to MPECs. It is shown that SQP converges superlinearly under reasonable assumptions … Read more

The Penalty Interior Point Method fails to converge for Mathematical Programs with Equilibrium Constraints

This paper presents a small example for which the Penalty Interior Point Method converges to a non-stationary point. The reasons for this adverse behaviour are discussed. CitationNumerical Analysis Report NA/208, Department of Mathematics, University of Dundee, February 2002.ArticleDownload View PDF

Relations between divergence of multipliers and convergence to infeasible points in primal-dual interior methods for nonconvex nonlinear programming

Recently, infeasibility issues in interior methods for nonconvex nonlinear programming have been studied. In particular, it has been shown how many line-search interior methods may converge to an infeasible point which is on the boundary of the feasible region with respect to the inequality constraints. The convergence is such that the search direction does not … Read more

Reduntant axioms in the definitionof Bregman functions

The definition of a Bregman function, given by Censor and Lent in 1981 on the basis of Bregman’s seminal 1967 paper, was subsequently used in a plethora of research works as a tool for building sequential and inherently parallel feasibility and optimization algorithms. Solodov and Svaiter have recently shown that it is not CitationJournal of … Read more

Block-Iterative Algorithms with Underrelaxed Bregman Projections

The notion of relaxation is well understood for orthogonal projections onto convex sets. For general Bregman projections it was considered only for hyperplanes and the question of how to relax Bregman projections onto convex sets that are not linear (i.e., not hyperplanes or half-spaces) has remained open. A definition of underrelaxation of Bregman projections onto … Read more

Recovery of the Analytic Center in Perturbed Quadratic Regions and Applications

We present results to recover an approximate analytic center when a sectional convex quadratic set is perturbed by a finite number of new quadratic inequalities. This kind of restarting may play an important role in some interior-point algorithms that successively refine the region where is the solution of the original problem. CitationTechnical Repor ES 508-99, … Read more

A Robust Primal-Dual Interior-Point Algorithm for Nonlinear Programs

We present a primal-dual interior-point algorithm of line-search type for nonlinear programs, which uses a new decomposition scheme of sequential quadratic programming. The algorithm can circumvent the convergence difficulties of some existing interior-point methods. Global convergence properties are derived without assuming regularity conditions. The penalty parameter rho in the merit function is updated automatically such … Read more