A Filter SQP Method: Local Convergence and Numerical Results

The work by Gould, Loh, and Robinson [“A filter method with unified step computation for nonlinear optimization”, SIAM J. Optim., 24 (2014), pp. 175–209] established global convergence of a new filter line search method for finding local first-order solutions to nonlinear and nonconvex constrained optimization problems. A key contribution of that work was that the … Read more

A Filter Active-Set Algorithm for Ball/Sphere Constrained Optimization Problem

In this paper, we propose a filter active-set algorithm for the minimization problem over a product of multiple ball/sphere constraints. By making effective use of the special structure of the ball/sphere constraints, a new limited memory BFGS (L-BFGS) scheme is presented. The new L-BFGS implementation takes advantage of the sparse structure of the Jacobian of … Read more

A filter method with unified step computation for nonlinear optimization

We present a filter linesearch method for solving general nonlinear and nonconvex optimization problems. The method is of the filter variety, but uses a robust (always feasible) subproblem based on an exact penalty function to compute a search direction. This contrasts traditional filter methods that use a (separate) restoration phase designed to reduce infeasibility until … Read more

A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational results

In this paper we modify the original primal-dual interior-point filter method proposed in [18] for the solution of nonlinear programming problems. We introduce two new optimality filter entries based on the objective function, and thus better suited for the purposes of minimization, and propose conditions for using inexact Hessians. We show that the global convergence … Read more

A New Low Rank Quasi-Newton Update Scheme for Nonlinear Programming

A new quasi-Newton scheme for updating a low rank positive semi-definite Hessian approximation is described, primarily for use in sequential quadratic programming methods for nonlinear programming. Where possible the symmetric rank one update formula is used, but when this is not possible a new rank two update is used, which is not in the Broyden … Read more

A Local Convergence Theory of a Filter Line Search Method for Nonlinear Programming

In this paper the theory of local convergence for a class of line search filter type methods for nonlinear programming is presented. The algorithm presented here is globally convergent (see Chin [4]) and the rate of convergence is two-step superlinear. The proposed algorithm solves a sequence of quadratic progrmming subproblems to obtain search directions and … Read more

A Global Convergence Theory of a Filter Line Search Method for Nonlinear Programming

A framework for proving global convergence for a class of line search filter type methods for nonlinear programming is presented. The underlying method is based on the dominance concept of multiobjective optimization where trial points are accepted provided there is a sufficient decrease in the objective function or constraints violation function. The proposed methods solve … Read more

On the superlinear local convergence of a filter-SQP method

Transition to superlinear local convergence is shown for a modified version of the trust-region filter-SQP method for nonlinear programming introduced by Fletcher, Leyffer, and Toint [8]. Hereby, the original trust-region SQP-steps can be used without an additional second order correction. The main modification consists in using the Lagrangian function value instead of the objective function … Read more

A globally convergent primal-dual interior-point filter method for nonlinear programming

In this paper, the filter technique of Fletcher and Leyffer (1997) is used to globalize the primal-dual interior-point algorithm for nonlinear programming, avoiding the use of merit functions and the updating of penalty parameters. The new algorithm decomposes the primal-dual step obtained from the perturbed first-order necessary conditions into a normal and a tangential step, … Read more

A globally convergent filter method for nonlinear programming

In this paper we present a filter algorithm for nonlinear programming and prove its global convergence to stationary points. Each iteration is composed of a restoration phase, which reduces a measure of infeasibility, and an optimality phase, which reduces the objective function in a tangential approximation of the feasible set. These two phases are totally … Read more