Nonlinear chance constrained problems: optimality conditions, regularization and solvers

We deal with chance constrained problems (CCP) with differentiable nonlinear random functions and discrete distribution. We allow nonconvex functions both in the constraints and in the objective. We reformulate the problem as a mixed-integer nonlinear program, and relax the integer variables into continuous ones. We approach the relaxed problem as a mathematical problem with complementarity … Read more

A Stabilised Scenario Decomposition Algorithm Applied to Stochastic Unit Commitment Problems

In recent years the expansion of energy supplies from volatile renewable sources has triggered an increased interest in stochastic optimization models for hydro-thermal unit commitment. Several studies have modelled this as a two-stage or multi-stage stochastic mixed-integer optimization problem. Solving such problems directly is computationally intractable for large instances, and alternative approaches are required. In … Read more

The Value of Stochastic Programming in Day-Ahead and Intraday Generation Unit Commitment

The recent expansion of renewable energy supplies has prompted the development of a variety of efficient stochastic optimization models and solution techniques for hydro-thermal scheduling. However, little has been published about the added value of stochastic models over deterministic ones. In the context of day-ahead and intraday unit commitment under wind uncertainty, we compare two-stage … Read more

Existence of Nash equilibrium for Chance-Constrained Games

We consider an n-player strategic game with finite action sets. The payoffs of each player are random variables. We assume that each player uses a satisficing payoff criterion defined by a chance-constraint, i.e., players face a chance- constrained game. We consider the cases where payoffs follow normal and elliptically symmetric distributions. For both cases we … Read more

A Distributionally-robust Approach for Finding Support Vector Machines

The classical SVM is an optimization problem minimizing the hinge losses of mis-classified samples with the regularization term. When the sample size is small or data has noise, it is possible that the classifier obtained with training data may not generalize well to pop- ulation, since the samples may not accurately represent the true population … Read more

A Stochastic Optimization Model for Designing Last Mile Relief Networks

In this study, we introduce a distribution network design problem that determines the locations and capacities of the relief distribution points in the last mile network, while considering demand- and network-related uncertainties in the post-disaster environment. The problem addresses the critical concerns of relief organizations in designing last mile networks, which are providing accessible and … Read more

Algorithmic innovations and software for the dual decomposition method applied to stochastic mixed-integer programs

We develop algorithmic innovations for the dual decomposition method to address two-stage stochastic programs with mixed-integer recourse and provide a parallel software implementation that we call DSP. Our innovations include the derivation of valid inequalities that tighten Lagrangian subproblems and that allow the guaranteed recovery of feasible solutions for problems without (relative) complete recourse. We … Read more

Quantitative Stability Analysis of Stochastic Quasi-Variational Inequality Problems and Applications

We consider a parametric stochastic quasi-variational inequality problem (SQVIP for short) where the underlying normal cone is de ned over the solution set of a parametric stochastic cone system. We investigate the impact of variation of the probability measure and the parameter on the solution of the SQVIP. By reformulating the SQVIP as a natural equation … Read more

Quadratically Perturbed Chance Constrained Programming with Fitted Distribution: t-Distribution vs. Gaussian

For chance-constrained programming (CCP) with non-Gaussian uncertainty, the optimization is generally intractable owing to the complicated probability density function (PDF). Using a simple fitted distribution with Kullback-Leibler (KL) divergence to represent the PDF mismatch is a systematic way to tackle CCP with non-Gaussian uncertainty. However, the essential difficulty of this methodology is to choose the … Read more

Probabilistic optimization via approximate p-efficient points and bundle methods

For problems when decisions are taken prior to observing the realization of underlying random events, probabilistic constraints are an important modelling tool if reliability is a concern. A key concept to numerically dealing with probabilistic constraints is that of p-efficient points. By adopting a dual point of view, we develop a solution framework that includes … Read more