Augmented Lagrangian and Alternating Direction Methods for Convex Optimization: A Tutorial and Some Illustrative Computational Results
The alternating direction of multipliers (ADMM) is a form of augmented Lagrangian algorithm that has experienced a renaissance in recent years due to its applicability to optimization problems arising from “big data” and image processing applications, and the relative ease with which it may be implemented in parallel and distributed computational environments. This paper aims … Read more