Inertial-relaxed splitting for composite monotone inclusions

In a similar spirit of the extension of the proximal point method developed by Alves et al. \cite{alvegm20}, we propose in this work an Inertial-Relaxed primal-dual splitting method to address the problem of decomposing the minimization of the sum of three convex functions, one of them being smooth, and considering a general coupling subspace. A … Read more

Tight global linear convergence rate bounds for operator splitting methods

In this paper we establish necessary and sufficient conditions for linear convergence of operator splitting methods for a general class of convex optimization problems where the associated fixed-point operator is averaged. We also provide a tight bound on the achievable convergence rate. Most existing results establishing linear convergence in such methods require restrictive assumptions regarding … Read more

Convergence rate analysis of the forward-Douglas-Rachford splitting scheme

Operator splitting schemes are a class of powerful algorithms that solve complicated monotone inclusion and convex optimization problems that are built from many simpler pieces. They give rise to algorithms in which all simple pieces of the decomposition are processed individually. This leads to easily implementable and highly parallelizable or distributed algorithms, which often obtain … Read more

Convergence rate analysis of primal-dual splitting schemes

Primal-dual splitting schemes are a class of powerful algorithms that solve complicated monotone inclusions and convex optimization problems that are built from many simpler pieces. They decompose problems that are built from sums, linear compositions, and infimal convolutions of simple functions so that each simple term is processed individually via proximal mappings, gradient mappings, and … Read more

Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions

Splitting schemes are a class of powerful algorithms that solve complicated monotone inclusion and convex optimization problems that are built from many simpler pieces. They give rise to algorithms in which the simple pieces of the decomposition are processed individually. This leads to easily implementable and highly parallelizable algorithms, which often obtain nearly state-of-the-art performance. … Read more

Convergence rate analysis of several splitting schemes

Splitting schemes are a class of powerful algorithms that solve complicated monotone inclusions and convex optimization problems that are built from many simpler pieces. They give rise to algorithms in which the simple pieces of the decomposition are processed individually. This leads to easily implementable and highly parallelizable algorithms, which often obtain nearly state-of-the-art performance. … Read more

A von Neumann Alternating Method for Finding Common Solutions to Variational Inequalities

Modifying von Neumann’s alternating projections algorithm, we obtain an alternating method for solving the recently introduced Common Solutions to Variational Inequalities Problem (CSVIP). For simplicity, we mainly confine our attention to the two-set CSVIP, which entails finding common solutions to two unrelated variational inequalities in Hilbert space. CitationNonlinear Analysis Series A: Theory, Methods & Applications, … Read more