Machine Learning Algorithms for Improving Black Box Optimization Solvers

Black-box optimization (BBO) addresses problems where objectives are accessible only through costly queries without gradients or explicit structure. Classical derivative-free methods—line search, direct search, and model-based solvers such as Bayesian optimization—form the backbone of BBO, yet often struggle in high-dimensional, noisy, or mixed-integer settings. Recent advances use machine learning (ML) and reinforcement learning (RL) to … Read more

An Inexact Restoration Direct Multisearch Filter Approach to Multiobjective Constrained Derivative-free Optimization

Direct Multisearch (DMS) is a well-established class of methods for multiobjective derivative-free optimization, where constraints are addressed by an extreme barrier approach, only evaluating feasible points. In this work, we propose a filter approach, combined with an inexact feasibility restoration step, to address constraints in the DMS framework. The filter approach treats feasibility as an … Read more

Worst-case evaluation complexity of a derivative-free quadratic regularization method

This short paper presents a derivative-free quadratic regularization method for unconstrained minimization of a smooth function with Lipschitz continuous gradient. At each iteration, trial points are computed by minimizing a quadratic regularization of a local model of the objective function. The models are based on forward finite-difference gradient approximations. By using a suitable acceptance condition … Read more