Branch-and-cut Approaches for Chance-constrained Formulations of Reliable Network Design Problems

We study solution approaches for the design of reliably connected networks. Speci fically, given a network with arcs that may fail at random, the goal is to select a minimum cost subset of arcs such the probability that a connectivity requirement is satis ed is at least 1-\epsilon, where \epsilon is a risk tolerance. We consider two … Read more

Convex relaxations of chance constrained optimization problems

In this paper we develop convex relaxations of chance constrained optimization problems in order to obtain lower bounds on the optimal value. Unlike existing statistical lower bounding techniques, our approach is designed to provide deterministic lower bounds. We show that a version of the proposed scheme leads to a tractable convex relaxation when the chance … Read more

A Branch-and-Cut Decomposition Algorithm for Solving Chance-Constrained Mathematical Programs with Finite Support

We present a new approach for exactly solving chance-constrained mathematical programs having discrete distributions with nite support and random polyhedral constraints. Such problems have been notoriously difficult to solve due to nonconvexity of the feasible region, and most available methods are only able to nd provably good solutions in certain very special cases. Our approach … Read more

Concepts and Applications of Stochastically Weighted Stochastic Dominance

Stochastic dominance theory provides tools to compare random entities. When comparing random vectors (say X and Y ), the problem can be viewed as one of multi-criterion decision making under uncertainty. One approach is to compare weighted sums of the components of these random vectors using univariate dominance. In this paper we propose new concepts … Read more

A Chance-Constrained Model & Cutting Planes for Fixed Broadband Wireless Networks

In this paper, we propose a chance-constrained mathematical program for fixed broadband wireless networks under unreliable channel conditions. The model is reformulated as integer linear program and valid inequalities are derived for the corresponding polytope. Computational results show that by an exact separation approach the optimality gap is closed by 42 % on average. ArticleDownload … Read more

Chance-Constrained Linear Matrix Inequalities with Dependent Perturbations: A Safe Tractable Approximation Approach

The wide applicability of chance-constrained programming, together with advances in convex optimization and probability theory, has created a surge of interest in finding efficient methods for processing chance constraints in recent years. One of the successes is the development of so-called safe tractable approximations of chance-constrained programs, where a chance constraint is replaced by a … Read more

Distributionally Robust Joint Chance Constraints with Second-Order Moment Information

We develop tractable semidefinite programming (SDP) based approximations for distributionally robust individual and joint chance constraints, assuming that only the first- and second-order moments as well as the support of the uncertain parameters are given. It is known that robust chance constraints can be conservatively approximated by Worst-Case Conditional Value-at-Risk (CVaR) constraints. We first prove … Read more

On the Safety First portfolio selection

A.D.Roy’s (1952) safety first (SF) approach to a financial portfolio selection is improved. Safety first means minimization of probability of poor returns. Improvement concerns a better estimation of the poor return probabilities by means of shortfall risk functions. Optimal SF-portfolio is sought similar to Roy’s geometric method but with a different efficient frontier. In case … Read more

Chance-constrained optimization via randomization: feasibility and optimality

In this paper we study the link between a semi-infinite chance-constrained optimization problem and its randomized version, i.e. the problem obtained by sampling a finite number of its constraints. Extending previous results on the feasibility of randomized convex programs, we establish here the feasibility of the solution obtained after the elimination of a portion of … Read more

Scalable Heuristics for Stochastic Programming with Scenario Selection

We describe computational procedures to solve a wide-ranging class of stochastic programs with chance constraints where the random components of the problem are discretely distributed. Our procedures are based on a combination of Lagrangian relaxation and scenario decomposition, which we solve using a novel variant of Rockafellar and Wets’ progressive hedging algorithm. Experiments demonstrate the … Read more