Newton Algorithms for Large-Scale Strictly Convex Separable Network Optimization

In this work we summarize the basic elements of primal and dual Newton algorithms for network optimization with continuously differentiable (strictly) convex arc cost functions. Both the basic mathematics and implementation are discussed, and hints to important tuning details are made. The exposition assumes that the reader posseses a significant level of prior knowledge in … Read more

Two properties of condition numbers for convex programs via implicitly defined barrier functions

We study two issues on condition numbers for convex programs: one has to do with the growth of the condition numbers of the linear equations arising in interior-point algorithms; the other deals with solving conic systems and estimating their distance to infeasibility. These two issues share a common ground: the key tool for their development … Read more

An infeasible active set method for convex problems with simple bounds

A primal-dual active set method for convex quadratic problems with bound constraints is presented. Based on a guess on the active set, a primal-dual pair $(x,s)$ is computed that satisfies the first order optimality condition and the complementarity condition. If $(x,s)$ is not feasible, a new active set is determined, and the process is iterated. … Read more