Design of Near Optimal Decision Rules in Multistage Adaptive Mixed-Integer Optimization

In recent years, decision rules have been established as the preferred solution method for addressing computationally demanding, multistage adaptive optimization problems. Despite their success, existing decision rules (a) are typically constrained by their a priori design and (b) do not incorporate in their modeling adaptive binary decisions. To address these problems, we first derive the … Read more

The Decision Rule Approach to Optimization under Uncertainty: Methodology and Applications

Dynamic decision-making under uncertainty has a long and distinguished history in operations research. Due to the curse of dimensionality, solution schemes that naively partition or discretize the support of the random problem parameters are limited to small and medium-sized problems, or they require restrictive modeling assumptions (e.g., absence of recourse actions). In the last few … Read more

A constraint sampling approach for multi-stage robust optimization

We propose a tractable approximation scheme for convex (not necessarily linear) multi-stage robust optimization problems. We approximate the adaptive decisions by finite linear combinations of prescribed basis functions and demonstrate how one can optimize over these decision rules at low computational cost through constraint randomization. We obtain a-priori probabilistic guarantees on the feasibility properties of … Read more