A transformation-based discretization method for solving general semi-infinite optimization problems

Discretization methods are commonly used for solving standard semi-infinite optimization (SIP) problems. The transfer of these methods to the case of general semi-infinite optimization (GSIP) problems is difficult due to the $x$-dependence of the infinite index set. On the other hand, under suitable conditions, a GSIP problem can be transformed into a SIP problem. In … Read more

A collision detection approach for maximizing the material utilization

We introduce a new method for a task of maximal material utilization, which is is to fit a flexible, scalable three-dimensional body into another aiming for maximal volume whereas position and shape may vary. The difficulty arises from the containment constraint which is not easy to handle numerically. We use a collision detection method to … Read more

How to Solve a Semi-infinite Optimization Problem

After an introduction to main ideas of semi-infinite optimization, this article surveys recent developments in theory and numerical methods for standard and generalized semi-infinite optimization problems. Particular attention is paid to connections with mathematical programs with complementarity constraints, lower level Wolfe duality, semi-smooth approaches, as well as branch and bound techniques in adaptive convexification procedures. … Read more