Understanding the Douglas-Rachford splitting method through the lenses of Moreau-type envelopes

We analyze the Douglas-Rachford splitting method for weakly convex optimization problems, by the token of the Douglas-Rachford envelope, a merit function akin to the Moreau envelope. First, we use epi-convergence techniques to show that this artifact approximates the original objective function via epigraphs. Secondly, we present how global convergence and local linear convergence rates for … Read more

Variational Theory and Algorithms for a Class of Asymptotically Approachable Nonconvex Problems

We investigate a class of composite nonconvex functions, where the outer function is the sum of univariate extended-real-valued convex functions and the inner function is the limit of difference-of-convex functions. A notable feature of this class is that the inner function may fail to be locally Lipschitz continuous. It covers a range of important yet … Read more

Epi-convergent Smoothing with Applications to Convex Composite Functions

Smoothing methods have become part of the standard tool set for the study and solution of nondifferentiable and constrained optimization problems as well as a range of other variational and equilibrium problems. In this note we synthesize and extend recent results due to Beck and Teboulle on infimal convolution smoothing for convex functions with those … Read more