A note on the squared slack variables technique for nonlinear optimization

In constrained nonlinear optimization, the squared slack variables can be used to transform a problem with inequality constraints into a problem containing only equality constraints. This reformulation is usually not considered in the modern literature, mainly because of possible numerical instabilities. However, this argument only concerns the development of algorithms, and nothing stops us in … Read more

The use of squared slack variables in nonlinear second-order cone programming

In traditional nonlinear programming, the technique of converting a problem with inequality constraints into a problem containing only equality constraints, by the addition of squared slack variables, is well-known. Unfortunately, it is considered to be an avoided technique in the optimization community, since the advantages usually do not compensate for the disadvantages, like the increase … Read more

Epi-convergent Smoothing with Applications to Convex Composite Functions

Smoothing methods have become part of the standard tool set for the study and solution of nondifferentiable and constrained optimization problems as well as a range of other variational and equilibrium problems. In this note we synthesize and extend recent results due to Beck and Teboulle on infimal convolution smoothing for convex functions with those … Read more

On reduced QP formulations of monotone LCP problems

Techniques for transforming convex quadratic programs (QPs) into monotone linear complementarity problems (LCPs) and vice versa are well known. We describe a class of LCPs for which a reduced QP formulation—one that has fewer constraints than the “standard” QP formulation—is available. We mention several instances of this class, including the known case in which the … Read more