The Strip Method for Shape Derivatives

A major challenge in shape optimization is the coupling of finite element method (FEM) codes in a way that facilitates efficient computation of shape derivatives. This is particularly difficult with multiphysics problems involving legacy codes, where the costs of implementing and maintaining shape derivative capabilities are prohibitive. The volume and boundary methods are two approaches … Read more


A novel method for performing model updating on finite element models is presented. The approach is particularly tailored to modal analyses of buildings, by which the lowest frequencies, obtained by using sensors and system identification approaches, need to be matched to the numerical ones predicted by the model. This is done by optimizing some unknown … Read more

Non Convergence Result for Conformal Approximation ofVariational Problems Subject to a Convexity Constraint

In this article, we are interested in the minimization of functionals in the set of convex functions. We investigate the discretization of the convexity through various numerical methods and find a geometrical obstruction confirmed by numerical simulations. We prove that there exist some convex functions that cannot be the limit of any conformal $P_1$ Finite … Read more