Local Convergence Analysis of an Inexact Trust-Region Method for Nonsmooth Optimization

In [R. J. Baraldi and D. P. Kouri, Mathematical Programming, (2022), pp. 1–40], we introduced an inexact trust-region algorithm for minimizing the sum of a smooth nonconvex function and a nonsmooth convex function in Hilbert space—a class of problems that is ubiquitous in data science, learning, optimal control, and inverse problems. This algorithm has demonstrated … Read more

Efficient Proximal Subproblem Solvers for a Nonsmooth Trust-Region Method

In [R. J. Baraldi and D. P. Kouri, Mathematical Programming, (2022), pp. 1-40], we introduced an inexact trust-region algorithm for minimizing the sum of a smooth nonconvex and nonsmooth convex function. The principle expense of this method is in computing a trial iterate that satisfies the so-called fraction of Cauchy decrease condition—a bound that ensures … Read more

A Matrix-Free Trust-Region Newton Algorithm for Convex-Constrained Optimization

We describe a matrix-free trust-region algorithm for solving convex-constrained optimization problems that uses the spectral projected gradient method to compute trial steps. To project onto the intersection of the feasible set and the trust region, we reformulate and solve the dual projection problem as a one-dimensional root finding problem. We demonstrate our algorithm’s performance on … Read more

ALESQP: An augmented Lagrangian equality-constrained SQP method for optimization with general constraints

We present a new algorithm for infinite-dimensional optimization with general constraints, called ALESQP. In short, ALESQP is an augmented Lagrangian method that penalizes inequality constraints and solves equality-constrained nonlinear optimization subproblems at every iteration. The subproblems are solved using a matrix-free trust-region sequential quadratic programming (SQP) method that takes advantage of iterative, i.e., inexact linear … Read more

A Primal-Dual Algorithm for Risk Minimization

In this paper, we develop an algorithm to efficiently solve risk-averse optimization problems posed in reflexive Banach space. Such problems often arise in many practical applications as, e.g., optimization problems constrained by partial differential equations with uncertain inputs. Unfortunately, for many popular risk models including the coherent risk measures, the resulting risk-averse objective function is … Read more

The Strip Method for Shape Derivatives

A major challenge in shape optimization is the coupling of finite element method (FEM) codes in a way that facilitates efficient computation of shape derivatives. This is particularly difficult with multiphysics problems involving legacy codes, where the costs of implementing and maintaining shape derivative capabilities are prohibitive. The volume and boundary methods are two approaches … Read more

KKT Preconditioners for PDE-Constrained Optimization with the Helmholtz Equation

This paper considers preconditioners for the linear systems that arise from optimal control and inverse problems involving the Helmholtz equation. Specifically, we explore an all-at-once approach. The main contribution centers on the analysis of two block preconditioners. Variations of these preconditioners have been proposed and analyzed in prior works for optimal control problems where the … Read more

Randomized Sketching Algorithms for Low Memory Dynamic Optimization

This paper develops a novel limited-memory method to solve dynamic optimization problems. The memory requirements for such problems often present a major obstacle, particularly for problems with PDE constraints such as optimal flow control, full waveform inversion, and optical tomography. In these problems, PDE constraints uniquely determine the state of a physical system for a … Read more