The solution of Euclidean norm trust region SQP subproblems via second order cone programs, an overview and elementary introduction

It is well known that convex SQP subproblems with a Euclidean norm trust region constraint can be reduced to second order cone programs for which the theory of Euclidean Jordan-algebras leads to efficient interior-point algorithms. Here, a brief and self-contained outline of the principles of such an implementation is given. All identities relevant for the … Read more

Uniform nonsingularity and complementarity problems over symmetric cones

We study the uniform nonsingularity property recently proposed by the authors and present its applications to nonlinear complementarity problems over a symmetric cone. In particular, by addressing theoretical issues such as the existence of Newton directions, the boundedness of iterates and the nonsingularity of B-subdifferentials, we show that the non-interior continuation method proposed by Xin … Read more

A continuation method for nonlinear complementarity problems over symmetric cone

In this paper, we introduce a new P-type condition for nonlinear functions defined over Euclidean Jordan algebras, and study a continuation method for nonlinear complementarity problems over symmetric cones. This new P-type condition represents a new class of nonmonotone nonlinear complementarity problems that can be solved numerically. CitationResearch Report, Division of Mathematical Sciences, School of … Read more

Lowner’s Operator and Spectral Functions in Euclidean Jordan Algebras

We study analyticity, differentiability, and semismoothness of Lowner’s operator and spectral functions under the framework of Euclidean Jordan algebras. In particular, we show that many optimization-related classical results in the symmetric matrix space can be generalized within this framework. For example, the metric projection operator over any symmetric cone defined in a Euclidean Jordan algebra … Read more