On the Relation between MPECs and Optimization Problems in Abs-Normal Form

We show that the problem of unconstrained minimization of a function in abs-normal form is equivalent to identifying a certain stationary point of a counterpart Mathematical Program with Equilibrium Constraints (MPEC). Hence, concepts introduced for the abs-normal forms turn out to be closely related to established concepts in the theory of MPECs. We give a … Read more

Exact penalty decomposition method for zero-norm minimization based on MPEC formulation

We reformulate the zero-norm minimization problem as an equivalent mathematical program with equilibrium constraints and establish that its penalty problem, induced by adding the complementarity constraint to the objective, is exact. Then, by the special structure of the exact penalty problem, we propose a decomposition method that can seek a global optimal solution of the … Read more

Solving Linear Programs with Complementarity Constraints using Branch-and-Cut

A linear program with linear complementarity constraints (LPCC) requires the minimization of a linear objective over a set of linear constraints together with additional linear complementarity constraints. This class has emerged as a modeling paradigm for a broad collection of problems, including bilevel programs, Stackelberg games, inverse quadratic programs, and problems involving equilibrium constraints. The … Read more

An Optimization Approach to Computing the Implied Volatility of American Options

We present a method to compute the implied volatility of American options as a mathematical program with equilibrium constraints. The formulation we present is new, as are the convergence results we prove. The algorithm holds the promise of being practical to implement, and we demonstrate some preliminary numerical results to this end. CitationPrinceton University working … Read more