A Shifted Primal-Dual Interior Method for Nonlinear Optimization

Interior methods provide an effective approach for the treatment of inequality constraints in nonlinearly constrained optimization. A new primal-dual interior method is proposed based on minimizing a sequence of shifted primal-dual penalty-barrier functions. Certain global convergence properties are established. In particular, it is shown that every limit point is either an infeasible stationary point, or … Read more

A Globally Convergent Stabilized SQP Method: Superlinear Convergence

Regularized and stabilized sequential quadratic programming (SQP) methods are two classes of methods designed to resolve the numerical and theoretical difficulties associated with ill-posed or degenerate nonlinear optimization problems. Recently, a regularized SQP method has been proposed that allows convergence to points satisfying certain second-order KKT conditions (SIAM J. Optim., 23(4):1983–2010, 2013). The method is … Read more

SQP Methods for Parametric Nonlinear Optimization

Sequential quadratic programming (SQP) methods are known to be effi- cient for solving a series of related nonlinear optimization problems because of desirable hot and warm start properties–a solution for one problem is a good estimate of the solution of the next. However, standard SQP solvers contain elements to enforce global convergence that can interfere … Read more

A GLOBALLY CONVERGENT STABILIZED SQP METHOD

Sequential quadratic programming (SQP) methods are a popular class of methods for nonlinearly constrained optimization. They are particularly effective for solving a sequence of related problems, such as those arising in mixed-integer nonlinear programming and the optimization of functions subject to differential equation constraints. Recently, there has been considerable interest in the formulation of \emph{stabilized} … Read more

Regularized Sequential Quadratic Programming

We present the formulation and analysis of a new sequential quadratic programming (\SQP) method for general nonlinearly constrained optimization. The method pairs a primal-dual generalized augmented Lagrangian merit function with a \emph{flexible} line search to obtain a sequence of improving estimates of the solution. This function is a primal-dual variant of the augmented Lagrangian proposed … Read more

A GSS method for oblique l_1 Procrustes problems

We propose a Generating Search Set method for solving the oblique l_1 Procrustes problem. Implementative details, algorithmic choices and theoretical properties of the method are discussed. The results of some numerical experiments are reported. Citation in Applied and Industrial Mathematics in Italy III – Proceedings of the 9th Conference SIMAI, De Bernardis et. Al. (eds), … Read more