A barrier Lagrangian dual method for multi-stage stochastic convex semidefinite optimization

In this paper, we present a polynomial-time barrier algorithm for solving multi-stage stochastic convex semidefinite optimization based on the Lagrangian dual method which relaxes the nonanticipativity constraints. We show that the barrier Lagrangian dual functions for our setting form self-concordant families with respect to barrier parameters. We also use the barrier function method to improve … Read more

Stochastic infinity norm optimization and self-concordant primal interior-point algorithms

We study the two-stage stochastic infinity norm optimization problem with recourse. First, we study and analyze the algebraic structure of the infinity norm cone, and use its algebra to compute the derivatives of the barrier recourse functions. Then, we show that the barrier recourse functions and the composite barrier functions for this optimization problem are … Read more

Interior-point algorithms for convex optimization based on primal-dual metrics

We propose and analyse primal-dual interior-point algorithms for convex optimization problems in conic form. The families of algorithms we analyse are so-called short-step algorithms and they match the current best iteration complexity bounds for primal-dual symmetric interior-point algorithm of Nesterov and Todd, for symmetric cone programming problems with given self-scaled barriers. Our results apply to … Read more

A polynomial-time interior-point method for conic optimization, with inexact barrier evaluations

In this work we develop a primal-dual short-step interior point method for conic convex optimization problems for which exact evaluation of the gradient and Hessian of the barrier function is either impossible or too expensive. As our main contribution, we show that if approximate gradients and Hessians can be computed, and the relative errors in … Read more