A Probabilistic-Driven Search Algorithm for solving a Class of Optimization Problems

In this paper we introduce a new numerical optimization technique, a Probabilistic-Driven Search Algorithm. This algorithm has the following characteristics: 1) In each iteration of loop, the algorithm just changes the value of k variables to find a new solution better than the current one; 2) In each variable of the solution of the problem, … Read more

A new Search via Probability Algorithm for solving Engineering Optimization Problems

The Search Algorithms have been introduced in the paper [3][6] under the name ‘Search via Probability Algorithm’. These optimization techniques converge very fast and are very efficient for solving optimization problems with very large scale feasible domains. But these optimization techniques are not effective in solving the numerical optimization problems with long narrow feasible domains. … Read more

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

This paper proposes a new probabilistic algorithm for solving multi-objective optimization problems – Probability-Driven Search Algorithm. The algorithm uses probabilities to control the process in search of Pareto optimal solutions. Especially, we use the absorbing Markov Chain to argue the convergence of the algorithm. We test this approach by implementing the algorithm on some benchmark … Read more

A NEW PROBABILISTIC ALGORITHM FOR SOLVING NONLINEAR EQUATIONS SYSTEMS

In this paper, we consider a class of optimization problems having the following characteristics: there exists a fixed number k which does not depend on the size n of the problem such that if we randomly change the value of k variables, it has the ability to find a new solution that is better than … Read more

A New Stochastic Algorithm for Engineering Optimization Problems

This paper proposes a new stochastic algorithm, Search via Probability (SP) algorithm, for single-objective optimization problems. The SP algorithm uses probabilities to control the process of searching for optimal solutions. We calculate probabilities of the appearance of a better solution than the current one on each iteration, and on the performance of SP algorithm we … Read more