Efficient Optimization Algorithms for Robust Principal Component Analysis and Its Variants

Robust PCA has drawn significant attention in the last decade due to its success in numerous application domains, ranging from bio-informatics, statistics, and machine learning to image and video processing in computer vision. Robust PCA and its variants such as sparse PCA and stable PCA can be formulated as optimization problems with exploitable special structures. … Read more

Fast Multilevel Algorithms for Compressive Principle Component Pursuit

Recovering a low-rank matrix from highly corrupted measurements arises in compressed sensing of structured high-dimensional signals (e.g., videos and hyperspectral images among others). Robust principal component analysis (RPCA), solved via principal component pursuit (PCP), recovers a low-rank matrix from sparse corruptions that are of unknown value and support by decomposing the observation matrix into two … Read more

A Unified Approach for Minimizing Composite Norms

We propose a first-order augmented Lagrangian algorithm (FALC) to solve the composite norm minimization problem min |sigma(F(X)-G)|_alpha + |C(X)- d|_beta subject to A(X)-b in Q; where sigma(X) denotes the vector of singular values of X, the matrix norm |sigma(X)|_alpha denotes either the Frobenius, the nuclear, or the L2-operator norm of X, the vector norm |.|_beta … Read more