A Modified Proximal Symmetric ADMM for Multi-Block Separable Convex Optimization with Linear Constraints

We consider the linearly constrained separable convex optimization problem whose objective function is separable w.r.t. $m$ blocks of variables. A bunch of methods have been proposed and well studied. Specifically, a modified strictly contractive Peaceman-Rachford splitting method (SC-PRCM) has been well studied in the literature for the special case of $m=3$. Based on the modified … Read more

A Partial PPa S-ADMM for Multi-Block for Separable Convex Optimization with Linear Constraints

The symmetric alternating direction method of multipliers (S-ADMM) is a classical effective method for solving two-block separable convex optimization. However, its convergence may not be guaranteed for multi-block case providing there is no additional assumptions. In this paper, we propose a partial PPa S-ADMM (referred as P3SADMM), which updates the Lagrange multiplier twice with suitable … Read more

AN INEXACT PERTURBED PATH-FOLLOWING METHOD FOR LAGRANGIAN DECOMPOSITION IN LARGE-SCALE SEPARABLE CONVEX OPTIMIZATION

This paper studies an inexact perturbed path-following algorithm in the framework of Lagrangian dual decomposition for solving large-scale separable convex programming problems. Unlike the exact versions considered in the literature, we propose to solve the primal subproblems inexactly up to a given accuracy. This leads to an inexactness of the gradient vector and the Hessian … Read more

An interior-point Lagrangian decomposition method for separable convex optimization

In this paper we propose a distributed algorithm for solving large-scale separable convex problems using Lagrangian dual decomposition and the interior-point framework. By adding self-concordant barrier terms to the ordinary Lagrangian we prove under mild assumptions that the corresponding family of augmented dual functions is self-concordant. This makes it possible to efficiently use the Newton … Read more