Strict efficiency in set optimization studied with the set approach

This paper is devoted to strict efficiency in set optimization studied with the set approach. Strict efficient solutions are defined with respect to the $l$-type less order relation and the possibly less order relation. Scalar characterization and necessary and/or sufficient conditions for such solutions are obtained. In particular, we establish some conditions expressed in terms … Read more

The Fermat Rule for Set Optimization Problems with Lipschitzian Set-Valued Mappings

n this paper, we consider set optimization problems with respect to the set approach. Specifically, we deal with the lower less and the upper less set relations. First, we derive properties of convexity and Lipschitzianity of suitable scalarizing functionals, under the same assumption on the set-valued objective mapping. We then obtain upper estimates of the … Read more

A Hausdorff-type distance, a directional derivative of a set-valued map and applications in set optimization

In this paper, we follow Kuroiwa’s set approach in set optimization, which proposes to compare values of a set-valued objective map $F$ respect to various set order relations. We introduce a Hausdorff-type distance relative to an ordering cone between two sets in a Banach space and use it to define a directional derivative for $F$. … Read more

The dimension of semialgebraic subdifferential graphs.

Examples exist of extended-real-valued closed functions on $\R^n$ whose subdifferentials (in the standard, limiting sense) have large graphs. By contrast, if such a function is semi-algebraic, then its subdifferential graph must have everywhere constant local dimension $n$. This result is related to a celebrated theorem of Minty, and surprisingly may fail for the Clarke subdifferential. … Read more

Continuity of set-valued maps revisited in the light of tame geometry

Continuity of set-valued maps is hereby revisited: after recalling some basic concepts of variational analysis and a short description of the State-of-the-Art, we obtain as by-product two Sard type results concerning local minima of scalar and vector valued functions. Our main result though, is inscribed in the framework of tame geometry, stating that a closed-valued … Read more

THE EKELAND VARIATIONAL PRINCIPLE FOR HENIG PROPER MINIMIZERS AND SUPER MINIMIZERS

In this paper we consider, for the first time, approximate Henig proper minimizers and approximate super minimizers of a set-valued map F with values in a partially ordered vector space and formulate two versions of the Ekeland variational principle for these points involving coderivatives in the senses of Ioffe, Clarke and Mordukhovich. As applications we … Read more