A unified scheme for scalarization in set optimization

In this work, we propose a new scheme for scalarization in set optimization studied with the Kuroiwa set appoach. First, we define an abstract scalarizing function possessing properties such as global Lipschizity, sublinearity, cone monotonicity, cone representation property, cone interior representation property and uniform positivity. Next, we use this function to define the so called … Read more

Vector Optimization w.r.t. Relatively Solid Convex Cones in Real Linear Spaces

In vector optimization, it is of increasing interest to study problems where the image space (a real linear space) is preordered by a not necessarily solid (and not necessarily pointed) convex cone. It is well-known that there are many examples where the ordering cone of the image space has an empty (topological / algebraic) interior, … Read more

Twenty years of continuous multiobjective optimization in the twenty-first century

The survey highlights some of the research topics which have attracted attention in the last two decades within the area of mathematical optimization of multiple objective functions. We give insights into topics where a huge progress can be seen within the last years. We give short introductions to the specific sub-fields as well as some … Read more

The Fermat Rule for Set Optimization Problems with Lipschitzian Set-Valued Mappings

n this paper, we consider set optimization problems with respect to the set approach. Specifically, we deal with the lower less and the upper less set relations. First, we derive properties of convexity and Lipschitzianity of suitable scalarizing functionals, under the same assumption on the set-valued objective mapping. We then obtain upper estimates of the … Read more

A Unified Characterization of Nonlinear Scalarizing Functionals in Optimization

Over the years, several classes of scalarization techniques in optimization have been introduced and employed in deriving separation theorems, optimality conditions and algorithms. In this paper, we study the relationships between some of those classes in the sense of inclusion. We focus on three types of scalarizing functionals (by Hiriart-Urruty, Drummond and Svaiter, Gerstewitz) and … Read more

Characterization of properly optimal elements with variable ordering structures

In vector optimization with a variable ordering structure the partial ordering defined by a convex cone is replaced by a whole family of convex cones, one associated with each element of the space. In recent publications it was started to develop a comprehensive theory for these vector optimization problems. Thereby also notions of proper efficiency … Read more

Properly optimal elements in vector optimization with variable ordering structures

In this paper, proper optimality concepts in vector optimization with variable ordering structures are introduced for the first time and characterization results via scalarizations are given. New type of scalarizing functionals are presented and their properties are discussed. The scalarization approach suggested in the paper does not require convexity and boundedness conditions. Citation Preprint of … Read more

An Improved Algorithm for Biobjective Integer Programs

A parametric algorithm for identifying the Pareto set of a biobjective integer program is proposed. The algorithm is based on the weighted Chebyshev (Tchebycheff) scalarization, and its running time is asymptotically optimal. A number of extensions are described, including: a technique for handling weakly dominated outcomes, a Pareto set approximation scheme, and an interactive version … Read more