On Tractable Convex Relaxations of Standard Quadratic Optimization Problems under Sparsity Constraints

Standard quadratic optimization problems (StQPs) provide a versatile modelling tool in various applications. In this paper, we consider StQPs with a hard sparsity constraint, referred to as sparse StQPs. We focus on various tractable convex relaxations of sparse StQPs arising from a mixed-binary quadratic formulation, namely, the linear optimization relaxation given by the reformulation-linearization technique, … Read more

Exactness of Parrilo’s conic approximations for copositive matrices and associated low order bounds for the stability number of a graph

De Klerk and Pasechnik (2002) introduced the bounds $\vartheta^{(r)}(G)$ ($r\in \mathbb{N}$) for the stability number $\alpha(G)$ of a graph $G$ and conjectured exactness at order $\alpha(G)-1$: $\vartheta^{(\alpha(G)-1)}(G)=\alpha(G)$. These bounds rely on the conic approximations $\mathcal{K}_n^{(r)}$ by Parrilo (2000) for the copositive cone $\text{COP}_n$. A difficulty in the convergence analysis of $\vartheta^{(r)}$ is the bad behaviour … Read more