Mixed-Integer Quadratic Optimization and Iterative Clustering Techniques for Semi-Supervised Support Vector Machines

Among the most famous algorithms for solving classification problems are support vector machines (SVMs), which find a separating hyperplane for a set of labeled data points. In some applications, however, labels are only available for a subset of points. Furthermore, this subset can be non-representative, e.g., due to self-selection in a survey. Semi-supervised SVMs tackle … Read more

2×2-convexifications for convex quadratic optimization with indicator variables

In this paper, we study the convex quadratic optimization problem with indicator variables. For the bivariate case, we describe the convex hull of the epigraph in the original space of variables, and also give a conic quadratic extended formulation. Then, using the convex hull description for the bivariate case as a building block, we derive … Read more

Sparse and Smooth Signal Estimation: Convexification of L0 Formulations

Signal estimation problems with smoothness and sparsity priors can be naturally modeled as quadratic optimization with L0-“norm” constraints. Since such problems are non-convex and hard-to-solve, the standard approach is, instead, to tackle their convex surrogates based on L1-norm relaxations. In this paper, we propose new iterative conic quadratic relaxations that exploit not only the L0-“norm” … Read more