Conditional gradient type methods for composite nonlinear and stochastic optimization

In this paper, we present a conditional gradient type (CGT) method for solving a class of composite optimization problems where the objective function consists of a (weakly) smooth term and a (strongly) convex regularization term. While including a strongly convex term in the subproblems of the classical conditional gradient (CG) method improves its rate of … Read more

A Second-Order Method for Strongly Convex L1-Regularization Problems

In this paper a robust second-order method is developed for the solution of strongly convex l1-regularized problems. The main aim is to make the proposed method as inexpensive as possible, while even difficult problems can be efficiently solved. The proposed method is a primal-dual Newton Conjugate Gradients (pdNCG) method. Convergence properties of pdNCG are studied … Read more