A Unified Framework for Symmetry Handling

Handling symmetries in optimization problems is essential for devising efficient solution methods. In this article, we present a general framework that captures many of the already existing symmetry handling methods (SHMs). While these SHMs are mostly discussed independently from each other, our framework allows to apply different SHMs simultaneously and thus outperforming their individual effect. … Read more

The Maximum k-Colorable Subgraph Problem and Orbitopes

Given an undirected node-weighted graph and a positive integer k, the maximum k-colorable subgraph probem is to select a k-colorable induced subgraph of largest weight. The natural integer programming formulation for this problem exhibits a high degree of symmetry which arises by permuting the color classes. It is well known that such symmetry has negative … Read more

Extended Formulations for Packing and Partitioning Orbitopes

We give compact extended formulations for the packing and partitioning orbitopes (with respect to the full symmetric group) described and analyzed in Kaibel and Pfetsch (Math. Program. 114 (1), 2008, 1-36). These polytopes are the convex hulls of all 0/1-matrices with lexicographically sorted columns and at most, resp. exactly, one 1-entry per row. They are … Read more

Orbitopal Fixing

The topic of this paper are integer programming models in which a subset of 0/1-variables encode a partitioning of a set of objects into disjoint subsets. Such models can be surprisingly hard to solve by branch-and-cut algorithms if the permutation of the subsets of the partition is irrelevant. This kind of symmetry unnecessarily blows up … Read more

Packing and Partitioning Orbitopes

We introduce orbitopes as the convex hulls of 0/1-matrices that are lexicographically maximal sub ject to a group acting on the columns. Special cases are packing and partitioning orbitopes, which arise from restrictions to matrices with at most or exactly one 1-entry in each row, respectively. The goal of investigating these polytopes is to gain … Read more