A Framework of Inertial Alternating Direction Method of Multipliers for Non-Convex Non-Smooth Optimization

In this paper, we propose an algorithmic framework dubbed inertial alternating direction methods of multipliers (iADMM), for solving a class of nonconvex nonsmooth multiblock composite optimization problems with linear constraints. Our framework employs the general minimization-majorization (MM) principle to update each block of variables so as to not only unify the convergence analysis of previous … Read more

Controllable Transmission Networks UnderDemand Uncertainty with Modular FACTS

The transmission system operators (TSOs) are responsible to provide secure and efficient access to the transmission system for all stakeholders. This task is gradually getting challenging due to the demand growth, demand uncertainty, rapid changes in generation mix, and market policies. Traditionally, the TSOs try to maximize the technical performance of the transmission network via … Read more

An Approximation Algorithm for Indefinite Mixed Integer Quadratic Programming

In this paper we give an algorithm that finds an epsilon-approximate solution to a mixed integer quadratic programming (MIQP) problem. The algorithm runs in polynomial time if the rank of the quadratic function and the number of integer variables are fixed. The running time of the algorithm is expected unless P=NP. In order to design … Read more

Sparse Approximations with Interior Point Methods

Large-scale optimization problems that seek sparse solutions have become ubiquitous. They are routinely solved with various specialized first-order methods. Although such methods are often fast, they usually struggle with not-so-well conditioned problems. In this paper, specialized variants of an interior point-proximal method of multipliers are proposed and analyzed for problems of this class. Computational experience … Read more