Projections onto the canonical simplex with additional linear inequalities

We consider the distributionally robust optimization and show that computing the distributional worst-case is equivalent to computing the projection onto the canonical simplex with additional linear inequality. We consider several distance functions to measure the distance of distributions. We write the projections as optimization problems and show that they are equivalent to finding a zero … Read more

Machine learning approach to chance-constrained problems: An algorithm based on the stochastic gradient descent

We consider chance-constrained problems with discrete random distribution. We aim for problems with a large number of scenarios. We propose a novel method based on the stochastic gradient descent method which performs updates of the decision variable based only on looking at a few scenarios. We modify it to handle the non-separable objective. A complexity … Read more

Solving joint chance constrained problems using regularization and Benders’ decomposition

We consider stochastic programs with joint chance constraints with discrete random distribution. We reformulate the problem by adding auxiliary variables. Since the resulting problem has a non-regular feasible set, we regularize it by increasing the feasible set. We solve the regularized problem by iteratively solving a master problem while adding Benders’ cuts in a slave … Read more

Nonlinear chance constrained problems: optimality conditions, regularization and solvers

We deal with chance constrained problems (CCP) with differentiable nonlinear random functions and discrete distribution. We allow nonconvex functions both in the constraints and in the objective. We reformulate the problem as a mixed-integer nonlinear program, and relax the integer variables into continuous ones. We approach the relaxed problem as a mathematical problem with complementarity … Read more

Sparse optimization for inverse problems in atmospheric modelling

We consider inverse problems in atmospheric modelling. Instead of using the ordinary least squares, we add a weighting matrix based on the topology of measurement points and show the connection with Bayesian modelling. Since the source–receptor sensitivity matrix is usually ill-conditioned, the problem is often regularized, either by perturbing the objective function or by modifying … Read more

Normally admissible stratifications and calculation of normal cones to a finite union of polyhedral sets

This paper considers computation of Fr\’echet and limiting normal cones to a finite union of polyhedra. To this aim, we introduce a new concept of normally admissible stratification which is convenient for calculations of such cones and provide its basic properties. We further derive formulas for the above mentioned cones and compare our approach to … Read more