Disk matrices and the proximal mapping for the numerical radius

Optimal matrices for problems involving the matrix numerical radius often have fields of values that are disks, a phenomenon associated with partial smoothness. Such matrices are highly structured: we experiment in particular with the proximal mapping for the radius, which often maps n-by-n random matrix inputs into a particular manifold of disk matrices that has … Read more

A simple Newton method for local nonsmooth optimization

Superlinear convergence has been an elusive goal for black-box nonsmooth optimization. Even in the convex case, the subgradient method is very slow, and while some cutting plane algorithms, including traditional bundle methods, are popular in practice, local convergence is still sluggish. Faster variants depend either on problem structure or on analyses that elide sequences of … Read more

Active-set Newton methods and partial smoothness

Diverse optimization algorithms correctly identify, in finite time, intrinsic constraints that must be active at optimality. Analogous behavior extends beyond optimization to systems involving partly smooth operators, and in particular to variational inequalities over partly smooth sets. As in classical nonlinear programming, such active-set structure underlies the design of accelerated local algorithms of Newton type. … Read more

Partial smoothness of the numerical radius at matrices whose fields of values are disks

Solutions to optimization problems involving the numerical radius often belong to a special class: the set of matrices having field of values a disk centered at the origin. After illustrating this phenomenon with some examples, we illuminate it by studying matrices around which this set of “disk matrices” is a manifold with respect to which … Read more

Inexact alternating projections on nonconvex sets

Given two arbitrary closed sets in Euclidean space, a simple transversality condition guarantees that the method of alternating projections converges locally, at linear rate, to a point in the intersection. Exact projection onto nonconvex sets is typically intractable, but we show that computationally-cheap inexact projections may suffice instead. In particular, if one set is defined … Read more

Gradient Sampling Methods for Nonsmooth Optimization

This paper reviews the gradient sampling methodology for solving nonsmooth, nonconvex optimization problems. An intuitively straightforward gradient sampling algorithm is stated and its convergence properties are summarized. Throughout this discussion, we emphasize the simplicity of gradient sampling as an extension of the steepest descent method for minimizing smooth objectives. We then provide overviews of various … Read more

BFGS convergence to nonsmooth minimizers of convex functions

The popular BFGS quasi-Newton minimization algorithm under reasonable conditions converges globally on smooth convex functions. This result was proved by Powell in 1976: we consider its implications for functions that are not smooth. In particular, an analogous convergence result holds for functions, like the Euclidean norm, that are nonsmooth at the minimizer. CitationManuscript: School of … Read more

Nonsmooth optimization using Taylor-like models: error bounds, convergence, and termination criteria

We consider optimization algorithms that successively minimize simple Taylor-like models of the objective function. Methods of Gauss-Newton type for minimizing the composition of a convex function and a smooth map are common examples. Our main result is an explicit relationship between the step-size of any such algorithm and the slope of the function at a … Read more

Error bounds, quadratic growth, and linear convergence of proximal methods

We show that the the error bound property, postulating that the step lengths of the proximal gradient method linearly bound the distance to the solution set, is equivalent to a standard quadratic growth condition. We exploit this equivalence in an analysis of asymptotic linear convergence of the proximal gradient algorithm for structured problems, which lack … Read more

Variational Analysis of the Crouzeix Ratio

Let $W(A)$ denote the field of values (numerical range) of a matrix $A$. For any polynomial $p$ and matrix $A$, define the Crouzeix ratio to have numerator $\max\left\{|p(\zeta)|:\zeta\in W(A)\right\}$ and denominator $\|p(A)\|_2$. M.~Crouzeix’s 2004 conjecture postulates that the globally minimal value of the Crouzeix ratio is $1/2$, over all polynomials $p$ of any degree and … Read more