Active-set Newton methods and partial smoothness

Diverse optimization algorithms correctly identify, in finite time, intrinsic constraints that must be active at optimality. Analogous behavior extends beyond optimization to systems involving partly smooth operators, and in particular to variational inequalities over partly smooth sets. As in classical nonlinear programming, such active-set structure underlies the design of accelerated local algorithms of Newton type. … Read more

”Active-set complexity” of proximal gradient: How long does it take to find the sparsity pattern?

Proximal gradient methods have been found to be highly effective for solving minimization problems with non-negative constraints or L1-regularization. Under suitable nondegeneracy conditions, it is known that these algorithms identify the optimal sparsity pattern for these types of problems in a finite number of iterations. However, it is not known how many iterations this may … Read more