Disk matrices and the proximal mapping for the numerical radius

Optimal matrices for problems involving the matrix numerical radius often have fields of values that are disks, a phenomenon associated with partial smoothness. Such matrices are highly structured: we experiment in particular with the proximal mapping for the radius, which often maps n-by-n random matrix inputs into a particular manifold of disk matrices that has … Read more

Superiorization vs. Accelerated Convex Optimization: The Superiorized/Regularized Least-Squares Case

In this paper we conduct a study of both superiorization and optimization approaches for the reconstruction problem of superiorized/regularized solutions to underdetermined systems of linear equations with nonnegativity variable bounds. Specifically, we study a (smoothed) total variation regularized least-squares problem with nonnegativity constraints. We consider two approaches: (a) a superiorization approach that, in contrast to … Read more

Semi-Smooth Second-order Type Methods for Composite Convex Programs

The goal of this paper is to study approaches to bridge the gap between first-order and second-order type methods for composite convex programs. Our key observations are: i) Many well-known operator splitting methods, such as forward-backward splitting (FBS) and Douglas-Rachford splitting (DRS), actually define a possibly semi-smooth and monotone fixed-point mapping; ii) The optimal solutions … Read more

Variational analysis of spectral functions simplified

Spectral functions of symmetric matrices — those depending on matrices only through their eigenvalues — appear often in optimization. A cornerstone variational analytic tool for studying such functions is a formula relating their subdifferentials to the subdifferentials of their diagonal restrictions. This paper presents a new, short, and revealing derivation of this result. We then … Read more

The proximal-proximal gradient algorithm

We consider the problem of minimizing a convex objective which is the sum of a smooth part, with Lipschitz continuous gradient, and a nonsmooth part. Inspired by various applications, we focus on the case when the nonsmooth part is a composition of a proper closed convex function P and a nonzero affine map, with the … Read more

The kernel average for two convex functions and its application to the extension and representation of monotone operators

We provide and analyze a based average for two convex functions, based on a kernel function. It covers several known averages such as the arithmetic average, epigraphical average, and the proximal average. When applied to the Fitzpatrick function and the conjugate of Fitzpatrick function associated with a monotone operator, our average produces an autoconjugate (also … Read more

Prox-Regularity and Stability of the Proximal Mapping

Fundamental insights into the properties of a function come from the study of its Moreau envelopes and Proximal point mappings. In this paper we examine the stability of these two objects under several types of perturbations. In the simplest case, we consider tilt-perturbations, i.e. perturbations which correspond to adding a linear term to the objective … Read more