## Ellipsoidal Classification via Semidefinite Programming

Separating two finite sets of points in a Euclidean space is a fundamental problem in classification. Customarily linear separation is used, but nonlinear separators such as spheres have been shown to have better performances in some tasks, such as edge detection in images. We exploit the relationships between the more general version of the spherical … Read more

## Polyhedral Separation via Difference of Convex (DC) Programming

We consider polyhedral separation of sets as a possible tool in supervised classification. In particular we focus on the optimization model introduced by Astorino and Gaudioso and adopt its reformulation in Difference of Convex (DC) form. We tackle the problem by adapting the algorithm for DC programming known as DCA. We present the results of … Read more

## Conic separation of finite sets:The homogeneous case

This work addresses the issue of separating two finite sets in $\mathbb{R}^n$ by means of a suitable revolution cone $$\Gamma (z,y,s)= \{x \in \mathbb{R}^n : s\,\Vert x-z\Vert – y^T(x-z)=0\}.$$ The specific challenge at hand is to determine the aperture coefficient $s$, the axis $y$, and the apex $z$ of the cone. These parameters … Read more

## Conic separation of finite sets: The non-homogeneous case

We address the issue of separating two finite sets in $\mathbb{R}^n$ by means of a suitable revolution cone $$\Gamma (z,y,s)= \{x \in \mathbb{R}^n :\, s\,\Vert x-z\Vert – y^T(x-z)=0\}.$$ One has to select the aperture coefficient $s$, the axis $y$, and the apex $z$ in such a way as to meet certain optimal separation … Read more

## Piecewise quadratic approximations in convex numerical optimization

We present a bundle method for convex nondifferentiable minimization where the model is a piecewise quadratic convex approximation of the objective function. Unlike standard bundle approaches, the model only needs to support the objective function from below at a properly chosen (small) subset of points, as opposed to everywhere. We provide the convergence analysis for … Read more