Structured Pruning of Neural Networks for Constraints Learning

In recent years, the integration of Machine Learning (ML) models with Operation Research (OR) tools has gained popularity across diverse applications, including cancer treatment, algorithmic configuration, and chemical process optimization. In this domain, the combination of ML and OR often relies on representing the ML model output using Mixed Integer Programming (MIP) formulations. Numerous studies … Read more

Ellipsoidal Classification via Semidefinite Programming

Separating two finite sets of points in a Euclidean space is a fundamental problem in classification. Customarily linear separation is used, but nonlinear separators such as spheres have been shown to have better performances in some tasks, such as edge detection in images. We exploit the relationships between the more general version of the spherical … Read more

A MILP Approach to DRAM Access Worst-Case Analysis

The Dynamic Random Access Memory (DRAM) is among the major points of contention in multi-core systems. We consider a challenging optimization problem arising in worst-case performance analysis of systems architectures: computing the worst-case delay (WCD) experienced when accessing the DRAM due to the interference of contending requests. The WCD is a crucial input for micro-architectural … Read more

A counterexample to an exact extended formulation for the single-unit commitment problem

Recently, Guan, Pan, and Zohu presented a MIP model for the thermal single- unit commitment claiming that provides an integer feasible solution for any convex cost function. In this note we provide a counterexample to this statement and we produce evidence that the perspective function is needed for this aim. CitationResearch Report 19-03, Istituto di … Read more

New MINLP Formulations for the Unit Commitment Problems with Ramping Constraints

The Unit Commitment (UC) problem in electrical power production requires to optimally operate a set of power generation units over a short time horizon (one day to a week). Operational constraints of each unit depend on its type (e.g., thermal, hydro, nuclear, …), and can be rather complex. For thermal units, typical ones concern minimum … Read more

Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy

The Cell Suppression Problem (CSP) is a challenging Mixed-Integer Linear Problem arising in statistical tabular data protection. Medium sized instances of CSP involve thousands of binary variables and million of continuous variables and constraints. However, CSP has the typical structure that allows application of the renowned Benders’ decomposition method: once the “complicating” binary variables are … Read more

QPLIB: A Library of Quadratic Programming Instances

This paper describes a new instance library for Quadratic Programming (QP), i.e., the family of continuous and (mixed)-integer optimization problems where the objective function, the constrains, or both are quadratic. QP is a very “varied” class of problems, comprising sub-classes of problems ranging from trivial to undecidable. Solution methods for QP are very diverse, ranging … Read more

Generalized Bundle Methods for Sum-Functions with Easy” Components: Applications to Multicommodity Network Design

We propose a modification to the (generalized) bundle scheme for minimization of a convex nondifferentiable sum-function in the case where some of the components are “easy”, that is, they are Lagrangian functions of explicitly known convex programs with “few” variables and constraints. This happens in many practical cases, particularly within applications to combinatorial optimization. In … Read more

Piecewise quadratic approximations in convex numerical optimization

We present a bundle method for convex nondifferentiable minimization where the model is a piecewise quadratic convex approximation of the objective function. Unlike standard bundle approaches, the model only needs to support the objective function from below at a properly chosen (small) subset of points, as opposed to everywhere. We provide the convergence analysis for … Read more