Polyhedral Separation via Difference of Convex (DC) Programming

We consider polyhedral separation of sets as a possible tool in supervised classification. In particular we focus on the optimization model introduced by Astorino and Gaudioso and adopt its reformulation in Difference of Convex (DC) form. We tackle the problem by adapting the algorithm for DC programming known as DCA. We present the results of … Read more

A New Extended Formulation with Valid Inequalities for the Capacitated Concentrator Location Problem

In this paper, we first present a new extended formulation of the Capacitated Concentrator Location Problem (CCLP) using the notion of cardinality of terminals assigned to a concentrator location. The disaggregated formulation consists of O(mn2) variables and constraints, where m denotes the number of concentrators and n the number of terminals. An immediate benefit of … Read more

Feature selection in SVM via polyhedral k-norm

We treat the Feature Selection problem in the Support Vector Machine (SVM) framework by adopting an optimization model based on use of the $\ell_0$ pseudo–norm. The objective is to control the number of non-zero components of normal vector to the separating hyperplane, while maintaining satisfactory classification accuracy. In our model the polyhedral norm $\|.\|_{[k]}$, intermediate … Read more

The forwarder planning problem in a two-echelon network

This paper is motivated by the case of a forwarder in dealing with inland transportation planning from a seaport, where inbound containers from the sea are filled with pallets, which have different destinations in the landside. Although this forwarder does not have or control any vehicle, he is required to plan the assignment of containers … Read more

Lagrangian relaxation for SVM feature selection

We discuss a Lagrangian-relaxation-based heuristics for dealing with feature selection in a standard L1 norm Support Vector Machine (SVM) framework for binary classification. The feature selection model we adopt is a Mixed Binary Linear Programming problem and it is suitable for a Lagrangian relaxation approach. Based on a property of the optimal multiplier setting, we … Read more

Conic separation of finite sets:The homogeneous case

This work addresses the issue of separating two finite sets in $\mathbb{R}^n $ by means of a suitable revolution cone $$ \Gamma (z,y,s)= \{x \in \mathbb{R}^n : s\,\Vert x-z\Vert – y^T(x-z)=0\}.$$ The specific challenge at hand is to determine the aperture coefficient $s$, the axis $y$, and the apex $z$ of the cone. These parameters … Read more

Conic separation of finite sets: The non-homogeneous case

We address the issue of separating two finite sets in $\mathbb{R}^n $ by means of a suitable revolution cone $$ \Gamma (z,y,s)= \{x \in \mathbb{R}^n :\, s\,\Vert x-z\Vert – y^T(x-z)=0\}.$$ One has to select the aperture coefficient $s$, the axis $y$, and the apex $z$ in such a way as to meet certain optimal separation … Read more

Piecewise quadratic approximations in convex numerical optimization

We present a bundle method for convex nondifferentiable minimization where the model is a piecewise quadratic convex approximation of the objective function. Unlike standard bundle approaches, the model only needs to support the objective function from below at a properly chosen (small) subset of points, as opposed to everywhere. We provide the convergence analysis for … Read more

An incremental method for solving convex finite minmax problems

We introduce a new approach to minimizing a function defined as the pointwise maximum over finitely many convex real functions (next referred to as the “component functions”), with the aim of working on the basis of “incomplete knowledge” of the objective function. In fact, a descent algorithm is proposed which does not necessarily require at … Read more

A DC piecewise affine model and a bundling technique in nonconvex nonsmooth minimization

We introduce an algorithm to minimize a function of several variables with no convexity nor smoothness assumptions. The main peculiarity of our approach is the use of an the objective function model which is the difference of two piecewise affine convex functions. Bundling and trust region concepts are embedded into the algorithm. Convergence of the … Read more