Hidden convexity in partially separable optimization

The paper identifies classes of nonconvex optimization problems whose convex relaxations have optimal solutions which at the same time are global optimal solutions of the original nonconvex problems. Such a hidden convexity property was so far limited to quadratically constrained quadratic problems with one or two constraints. We extend it here to problems with some … Read more

Robust solutions of optimization problems affected by uncertain probabilities

In this paper we focus on robust linear optimization problems with uncertainty regions defined by phi-divergences (for example, chi-squared, Hellinger, Kullback-Leibler). We show how uncertainty regions based on phi-divergences arise in a natural way as confidence sets if the uncertain parameters contain elements of a probability vector. Such problems frequently occur in, for example, optimization … Read more

Immunizing conic quadratic optimization problems against implementation errors

We show that the robust counterpart of a convex quadratic constraint with ellipsoidal implementation error is equivalent to a system of conic quadratic constraints. To prove this result we first derive a sharper result for the S-lemma in case the two matrices involved can be simultaneously diagonalized. This extension of the S-lemma may also be … Read more

Optimization of univariate functions on bounded intervals by interpolation and semidefinite programming

We consider the problem of minimizing a univariate, real-valued function f on an interval [a,b]. When f is a polynomial, we review how this problem may be reformulated as a semidefinite programming (SDP) problem, and review how to extract all global minimizers from the solution of the SDP problem. For general f, we approximate the … Read more

On the complexity of optimization over the standard simplex

We review complexity results for minimizing polynomials over the standard simplex and unit hypercube. In addition, we show that there exists a polynomial time approximation scheme (PTAS) for minimizing some classes of functions (including Lipschitz continuous functions) over the standard simplex. The main tools used in the analysis are Bernstein approximation and Lagrange interpolation on … Read more