On decomposability of the multilinear polytope and its implications in mixed-integer nonlinear optimization

In this article, we provide an overview of some of our recent results on the facial structure of the multilinear polytope with a special focus on its decomposability properties. Namely, we demonstrate that, in the context of mixed-integer nonlinear optimization, the decomposability of the multilinear polytope plays a key role from both theoretical and algorithmic … Read more

The running intersection relaxation of the multilinear polytope

The multilinear polytope MP_G of a hypergraph G is the convex hull of a set of binary points satisfying a collection of multilinear equations. We introduce the running-intersection inequalities, a new class of facet-defining inequalities for the multilinear polytope. Accordingly, we define a new polyhedral relaxation of MP_G referred to as the running-intersection relaxation and … Read more

Subdeterminants and Concave Integer Quadratic Programming

We consider the NP-hard problem of minimizing a separable concave quadratic function over the integral points in a polyhedron, and we denote by D the largest absolute value of the subdeterminants of the constraint matrix. In this paper we give an algorithm that finds an epsilon-approximate solution for this problem by solving a number of … Read more

Lower bounds on the lattice-free rank for packing and covering integer programs

In this paper, we present lower bounds on the rank of the split closure, the multi-branch closure and the lattice-free closure for packing sets as a function of the integrality gap. We also provide a similar lower bound on the split rank of covering polyhedra. These results indicate that whenever the integrality gap is high, … Read more

Characterizations of Mixed Binary Convex Quadratic Representable Sets

Representability results play a fundamental role in optimization since they provide characterizations of the feasible sets that arise from optimization problems. In this paper we study the sets that appear in the feasibility version of mixed binary convex quadratic optimization problems. We provide a complete characterization of the sets that can be obtained as the … Read more

The Multilinear polytope for acyclic hypergraphs

We consider the Multilinear polytope defined as the convex hull of the set of binary points satisfying a collection of multilinear equations. Such sets are of fundamental importance in many types of mixed-integer nonlinear optimization problems, such as binary polynomial optimization. Utilizing an equivalent hypergraph representation, we study the facial structure of the Multilinear polytope … Read more

Aggregation-based cutting-planes for packing and covering integer programs

In this paper, we study the strength of Chvatal-Gomory (CG) cuts and more generally aggregation cuts for packing and covering integer programs (IPs). Aggregation cuts are obtained as follows: Given an IP formulation, we first generate a single implied inequality using aggregation of the original constraints, then obtain the integer hull of the set defined … Read more

Ellipsoidal Mixed-Integer Representability

Representability results for mixed-integer linear systems play a fundamental role in optimization since they give geometric characterizations of the feasible sets that can be formulated by mixed-integer linear programming. We consider a natural extension of mixed-integer linear systems obtained by adding just one ellipsoidal inequality. The set of points that can be described, possibly using … Read more

On Decomposability of Multilinear Sets

In this paper, we consider the Multilinear set defined as the set of binary points satisfying a collection of multilinear equations. Such sets appear in factorable reformulations of many types of nonconvex optimization problems, including binary polynomial optimization. A great simplification in studying the facial structure of the convex hull of the Multilinear set is … Read more

On Approximation Algorithms for Concave Mixed-Integer Quadratic Programming

Concave Mixed-Integer Quadratic Programming is the problem of minimizing a concave quadratic polynomial over the mixed-integer points in a polyhedral region. In this work we describe an algorithm that finds an ε-approximate solution to a Concave Mixed-Integer Quadratic Programming problem. The running time of the proposed algorithm is polynomial in the size of the problem … Read more