Crew Scheduling and Routing Problem in Road Restoration via Branch-and-Price Algorithms

This paper addresses the single crew scheduling and routing problem in the context of road network repair and restoration, which is critical in assisting complex post-disaster decisions in humanitarian logistics settings. We present three novel formulations for this problem, which are the first suitable for column generation and branch-and-price (BP) algorithms. Specifically, our first formulation … Read more

Practicable Robust Stochastic Optimization under Divergence Measures

We seek to provide practicable approximations of the two-stage robust stochastic optimization (RSO) model when its ambiguity set is constructed with an f-divergence radius. These models are known to be numerically challenging to various degrees, depending on the choice of the f-divergence function. The numerical challenges are even more pronounced under mixed-integer rst-stage decisions. In … Read more

‘Pro-poor’ humanitarian logistics: Prioritizing the vulnerable in allocating relief aid

This paper builds on the premise that the most vulnerable areas or groups of people should be protected from disasters by being given priority in humanitarian operations, particularly when there are limited resources available for disaster management. The basis and the development of the paper are strongly aligned with the United Nations’ Sustainable Development Goals … Read more

The heterogeneous multicrew scheduling and routing problem in road restoration

This paper introduces the heterogeneous multicrew scheduling and routing problem (MCSRP) in road restoration. The MCSRP consists of identifying the schedule and route of heterogeneous crews that must perform the restoration of damaged nodes used in the paths to connect a source node to demand nodes in a network affected by extreme events. The objective … Read more

Decomposition-based algorithms for the crew scheduling and routing problem in road restoration

The crew scheduling and routing problem (CSRP) consists of determining the best route and schedule for a single crew to repair damaged nodes in a network affected by extreme events. The problem also involves the design of paths to connect a depot to demand nodes that become accessible only after the damaged nodes in these … Read more

The robust vehicle routing problem with time windows: compact formulation and branch-price-and-cut method

We address the robust vehicle routing problem with time windows (RVRPTW) under customer demand and travel time uncertainties. As presented thus far in the literature, robust counterparts of standard formulations have challenged general-purpose optimization solvers and specialized branch-and-cut methods. Hence, optimal solutions have been reported for small-scale instances only. Additionally, although the most successful methods … Read more

A Branch-and-Benders-Cut Algorithm for the Road Restoration Crew Scheduling and Routing Problem

Extreme events such as disasters cause partial or total disruption of basic services such as water, energy, communication and transportation. In particular, roads can be damaged or blocked by debris, thereby obstructing access to certain affected areas. Thus, restoration of the damaged roads is necessary to evacuate victims and distribute emergency commodities to relief centers … Read more

An Improved Stochastic Optimization Model for Water Supply Pumping Systems in Urban Networks

This study investigates a pump scheduling problem for the collection, transfer and storage of water in water supply systems in urban networks. The objective of this study is to determine a method to minimize the electricity costs associated with pumping operations. To address the dynamic and random nature of water demand, we propose a two-stage … Read more