How do exponential size solutions arise in semidefinite programming?

Semidefinite programs (SDPs) are some of the most popular and broadly applicable optimization problems to emerge in the last thirty years. A curious pathology of SDPs, illustrated by a classical example of Khachiyan, is that their solutions may need exponential space to even write down. Exponential size solutions are the main obstacle to solve a … Read more

An echelon form of weakly infeasible semidefinite programs and bad projections of the psd cone

A weakly infeasible semidefinite program (SDP) has no feasible solution, but it has nearly feasible solutions that approximate the constraint set to arbitrary precision. These SDPs are ill-posed and numerically often unsolvable. They are also closely related to “bad” linear projections that map the cone of positive semidefinite matrices to a nonclosed set. We describe … Read more

A simplified treatment of Ramana’s exact dual for semidefinite programming

In semidefinite programming the dual may fail to attain its optimal value and there could be a duality gap, i.e., the primal and dual optimal values may differ. In a striking paper, Ramana proposed a polynomial size extended dual that does not have these deficiencies and yields a number of fundamental results in complexity theory. … Read more

On positive duality gaps in semidefinite programming

We study semidefinite programs (SDPs) with positive duality gaps, i.e., different optimal values in the primal and dual problems. the primal and dual problems differ. These SDPs are considered extremely pathological, they are often unsolvable, and they also serve as models of more general pathological convex programs. We first fully characterize two variable SDPs with … Read more

Sieve-SDP: a simple facial reduction algorithm to preprocess semidefinite programs

We introduce Sieve-SDP, a simple algorithm to preprocess semidefinite programs (SDPs). Sieve-SDP belongs to the class of facial reduction algorithms. It inspects the constraints of the problem, deletes redundant rows and columns, and reduces the size of the variable matrix. It often detects infeasibility. It does not rely on any optimization solver: the only subroutine … Read more

Bad semidefinite programs with short proofs, and the closedness of the linear image of the semidefinite cone

Semidefinite programs (SDPs) — some of the most useful and pervasive optimization problems of the last few decades — often behave pathologically: the optimal values of the primal and dual problems may differ and may not be attained. Such SDPs are theoretically interesting and often impossible to solve. Yet, the pathological SDPs in the literature … Read more

A simple preprocessing algorithm for semidefinite programming

We propose a very simple preprocessing algorithm for semidefinite programming. Our algorithm inspects the constraints of the problem, deletes redundant rows and columns in the constraints, and reduces the size of the variable matrix. It often detects infeasibility. Our algorithm does not rely on any optimization solver: the only subroutine it needs is Cholesky factorization, … Read more

Exact duals and short certificates of infeasibility and weak infeasibility in conic linear programming

We describe simple and exact duals, and certificates of infeasibility and weak infeasibility in conic linear programming which do not rely on any constraint qualification, and retain most of the simplicity of the Lagrange dual. In particular, some of our infeasibility certificates generalize the row echelon form of a linear system of equations, and the … Read more

Exact duality in semidefinite programming based on elementary reformulations

In semidefinite programming (SDP), unlike in linear programming, Farkas’ lemma may fail to prove infeasibility. Here we obtain an exact, short certificate of infeasibility in SDP by an elementary approach: we reformulate any equality constrained semidefinite system using only elementary row operations, and rotations. When the system is infeasible, the infeasibility of the reformulated system … Read more

Coordinate shadows of semi-definite and Euclidean distance matrices

We consider the projected semi-definite and Euclidean distance cones onto a subset of the matrix entries. These two sets are precisely the input data defining feasible semi-definite and Euclidean distance completion problems. We characterize when these sets are closed, and use the boundary structure of these two sets to elucidate the Krislock-Wolkowicz facial reduction algorithm. … Read more