On the global convergence of a general class of augmented Lagrangian methods

In [E. G. Birgin, R. Castillo and J. M. Martínez, Computational Optimization and Applications 31, pp. 31-55, 2005], a general class of safeguarded augmented Lagrangian methods is introduced which includes a large number of different methods from the literature. Besides a numerical comparison including 65 different methods, primal-dual global convergence to a KKT point is … Read more

The Hyperbolic Augmented Lagrangian Algorithm

The hyperbolic augmented Lagrangian algorithm (HALA) is introduced in the area of continuous optimization for solving nonlinear programming problems. Under mild assumptions, such as: convexity, Slater’s qualification and differentiability, the convergence of the proposed algorithm is proved. We also study the duality theory for the case of the hyperbolic augmented Lagrangian function. Finally, in order … Read more

An Inexact Proximal Method with Proximal Distances for Quasimonotone Equilibrium Problems

In this paper we propose an inexact proximal point method to solve equilibrium problem using proximal distances and the diagonal subdi erential. Under some natural assumptions on the problem and the quasimonotonicity condition on the bifunction, we prove that the sequence generated for the method converges to a solution point of the problem. CitationReport01-2016-PESC-COPPE-UFRJArticleDownload View PDF

An Inexact Proximal Algorithm for Pseudomonotone and Quasimonotone Variational Inequalities

In this paper we introduce an inexact proximal point algorithm using proximal distances for solving variational inequality problems when the mapping is pseudomonotone or quasimonotone. Under some natural assumptions we prove that the sequence generates by the algorithm is convergent for the pseudomonotone case and weakly convergent for the quasimonotone ones. This approach unifies the … Read more

An Inexact Proximal Method for Quasiconvex Minimization

In this paper we propose an inexact proximal point method to solve constrained minimization problems with locally Lipschitz quasiconvex objective functions. Assuming that the function is also bounded from below, lower semicontinuous and using proximal distances, we show that the sequence generated for the method converges to a stationary point of the problem. CitationJuly 2013ArticleDownload … Read more